f0x.at1/stm32l4a6zg-f0x.at1/Core/Src/ringbuf.c

312 lines
8.1 KiB
C
Raw Normal View History

2022-07-15 12:44:08 +02:00
/**
******************************************************************************
* @file ringbuf.c
* @brief driver for a ring buffer used for UART RX
******************************************************************************
* @author: Thomas Kuschel KW4NZ
* created 2022-07-12
*
* A description can be found in the header file ringbuf.h
******************************************************************************/
#include <stdint.h>
#include <stddef.h>
#include <limits.h>
#include <stdlib.h> /* malloc */
#include <stdio.h> /* printf */
#include <string.h> /* memcpy */
#include "ringbuf.h"
/* macros */
#define MEM_USED(b) ((b->size + b->head - b->tail) % b->size)
#define MEM_FREE(b) ((b->size + b->tail - b->head - 1) % b->size + 1)
#if RING_STATISTICS_ENABLED
typedef struct stat {
uint32_t overflows;
uint32_t reads;
uint32_t writes;
} stat_t;
#endif
typedef struct ringbuf {
#if RING_STATISTICS_ENABLED
stat_t statistics;
#endif
ringbuf_rcv_cb_t rcv_callback;
void *rcv_cb_data;
uint8_t *buf;
uint16_t size;
uint16_t head;
uint16_t tail;
uint16_t delimiterfound;
uint16_t max_read_len;
unsigned full :1; // not implemented yet
unsigned halffull:1; // not implemented yet
unsigned overflow:1;
unsigned allowoverwrite:1;
} ringbuf_t;
struct ringbuf * ringbuf_create(size_t size, ringbuf_param_t param) {
struct ringbuf * rb;
if (size == 0 || size > USHRT_MAX)
return NULL;
// rb = malloc(sizeof(ringbuf_t) + size * sizeof(uint8_t));
rb = calloc(1, sizeof(ringbuf_t) + size * sizeof(uint8_t));
if (rb == NULL) {
puts("Memory not allocated.");
2022-07-15 12:44:08 +02:00
exit(0);
} else {
//puts("Memory successfully allocated.");
2022-07-15 12:44:08 +02:00
// the data area is connected to the structure
rb->buf = (uint8_t *)rb + sizeof(ringbuf_t);
rb->size = (uint16_t)size;
// rb->head = rb->tail = rb->halffull = rb->overflow 0;
if (param & RINGBUF_ALLOWOVERWRITE)
rb->allowoverwrite = 1;
rb->max_read_len = RINGBUF_MAX_READ_LEN;
}
return rb;
}
void ringbuf_destroy(struct ringbuf *ring) {
if (ring != 0)
free(ring);
}
int ringbuf_dump(struct ringbuf *ring) {
if (ring == NULL)
return -EINVAL;
printf("Buffer: 0x%08x\n", (unsigned int) ring);
printf("Start: 0x%08x\n", (unsigned int) ring->buf);
printf("Size: total: %d used: %d free: %d\n", ring->size, MEM_USED(ring), MEM_FREE(ring));
printf("Head: %d\n", ring->head);
printf("Tail: %d\n", ring->tail);
printf("Empty: %s\n", (ring->head == ring->tail) ? "yes" : "no");
printf("Max read length: %d\n", ring->max_read_len);
for (size_t i = 0; i < ring->size; i += 16 ) {
for (size_t j = 0; j < 16 && (j + i) < ring->size; j++) {
//printf("%02x%s", *(ring->buf +i), ((i%4)==3)?(((i%16)==15)?"\n":" "):"");
printf("%02x%s", *(ring->buf + i + j), ((j%4)==3)?" ":"");
}
putchar(' ');
for (size_t j = 0; j < 16 && (j + i) < ring->size; j++) {
uint8_t b = *(ring->buf + i + j);
printf("%c", ((b >= ' ') && (b < 127))? b: '.');
}
puts("");
}
return 0;
}
int ringbuf_push(struct ringbuf *ring, const uint8_t *data, size_t size) {
size_t delimiterpos;
size_t delimiterfound = 0;
uint16_t head;
uint8_t *ptr;
if (ring == NULL || size == 0 || data == NULL || size > USHRT_MAX)
return -EINVAL;
if (size >= ring->size)
return -ENOMEM;
if (size >= (size_t)MEM_FREE(ring)) { // no free space available, but overwrite ?
#if RING_STATISTICS_ENABLED
ring->statistics.overflows++;
#endif
if (ring->allowoverwrite)
ring->overflow = 1;
else
return -ENOMEM;
}
head = ring->head;
if (head + size > ring->size) {
uint16_t remaining = ring->size - head;
memcpy(ring->buf + head, data, remaining);
ring->head = (uint16_t)(size - remaining);
memcpy(ring->buf, data + remaining, ring->head);
} else {
memcpy(ring->buf + head, data, size);
ring->head += (uint16_t)size;
}
for (delimiterpos = 0; delimiterpos < size; delimiterpos++) {
2024-10-26 23:24:45 +02:00
if (data[delimiterpos] == RINGBUF_DELIMITER || data[delimiterpos] == 0 ) {
2022-07-15 12:44:08 +02:00
delimiterfound++;
ptr = ring->buf + ((head + delimiterpos) % ring->size);
*ptr = 0;
}
}
ring->head %= ring->size;
#if RING_STATISTICS_ENABLED
ring->statistics.writes +=size;
#endif
ring->delimiterfound = (uint16_t)delimiterfound;
//call registered callback function
if (ring->delimiterfound && ring->rcv_callback != NULL)
ring->rcv_callback(ring->delimiterfound, ring->rcv_cb_data);
return (int)size;
}
int ringbuf_clear(struct ringbuf *ring) {
if (ring == NULL)
return -EINVAL;
ring->tail = ring->head;
ring->full = ring->halffull = ring->overflow = 0;
return 0;
}
int ringbuf_is_empty(struct ringbuf *ring) {
if (ring == NULL)
return -EINVAL;
return (ring->tail == ring->head);
}
int ringbuf_pull(struct ringbuf *ring, uint8_t *data, size_t maxsize) {
size_t datasize;
if (ring == NULL || maxsize == 0 || data == NULL || maxsize > USHRT_MAX)
return -EINVAL;
datasize = min(maxsize, (size_t)MEM_USED(ring));
if (datasize > ring->size)
return -ENOMEM;
if ((ring->head > ring->tail) /*|| ring->full*/) {
memcpy(data, ring->buf + ring->tail, datasize);
ring->tail += (uint16_t)datasize;
} else {
if (ring->head < ring->tail) {
size_t remaining = ring->size -ring->tail;
if (datasize < remaining) {
memcpy(data, ring->buf + ring->tail, datasize);
ring->tail += (uint16_t)datasize;
} else {
memcpy(data, ring->buf + ring->tail, remaining);
ring->tail = (uint16_t)(datasize - remaining);
memcpy(data + remaining, ring->buf, ring->tail);
}
}
}
#if RING_STATISTICS_ENABLED
ring->statistics.reads += datasize;
#endif
ring->overflow = 0;
return (int)datasize;
}
int ringbuf_read(struct ringbuf *ring, char *str) {
int len = 0;
uint16_t tail = 0;
if (ring == NULL || str == NULL)
return -EINVAL;
*str = '\0';
if (ring->head == ring->tail){
return 0;
}
tail = ring->tail;
if (ring->head > ring->tail) {
if (ring->max_read_len < 2)
return -ENOMEM;
strncpy(str, (char *)(ring->buf + ring->tail), ring->max_read_len);
str[ring->max_read_len] = '\0';
for (int i = ring->tail; i < ring->head; i++) {
if (*(ring->buf + i) == 0) {
ring->tail = (uint16_t)i + 1;
break;
}
}
if (ring->tail == tail) {
// no \0 found
return 0;
}
} else {
int continu = 1;
int tail = 0;
strncpy(str, (char *)(ring->buf + ring->tail),(size_t)min(ring->size - ring->tail, ring->max_read_len));
str[ring->max_read_len] = '\0';
len = (int)strlen(str);
for (int i = ring->tail; i < ring->size; i++) {
if (*(ring->buf + i) == 0) {
tail = i + 1;
continu = 0;
break;
}
}
if (continu) {
strncpy(str + ring->size - ring->tail, (char *)ring->buf, (size_t)(ring->max_read_len - ring->size + ring->tail));
str[ring->max_read_len] = '\0';
continu = 1;
for (int i = 0; i < ring->head; i++) {
if (*(ring->buf + i) == 0) {
tail = i + 1;
continu = 0;
break;
}
}
if (continu)
return -EINVAL;
}
ring->tail = (uint16_t)tail;
}
len = (int)strlen(str);
ring->tail = ring->tail % ring->size;
#if RING_STATISTICS_ENABLED
ring->statistics.reads += (uint32_t)len + 1;
#endif
return len;
}
int ringbuf_write(struct ringbuf *ring, char *str) {
size_t len = 0;
len = (size_t)strlen(str);
if (len > 0)
return ringbuf_push(ring, (uint8_t *)str, len + 1);
else
return -EINVAL;
}
#if RING_STATISTICS_ENABLED
int ringbuf_statistics(struct ringbuf *ring) {
if (ring == NULL)
return -EINVAL;
puts("Ring Buffer Statistics:");
printf(" Bytes written: %ld\n", ring->statistics.writes);
printf(" Bytes read: %ld\n", ring->statistics.reads);
printf("# of overflows: %ld\n", ring->statistics.overflows);
return 0;
}
int ringbuf_stat_writes(struct ringbuf *ring) {
if (ring == NULL)
return -EINVAL;
return (int)ring->statistics.writes;
}
int ringbuf_stat_reads(struct ringbuf *ring) {
if (ring == NULL)
return -EINVAL;
return (int)ring->statistics.reads;
}
int ringbuf_stat_overflow(struct ringbuf *ring) {
if (ring == NULL)
return -EINVAL;
return (int)ring->statistics.overflows;
}
#endif
int ringbuf_callback_register(struct ringbuf *ring, ringbuf_rcv_cb_t cb_func, void *cb_data) {
if (ring == NULL)
return -EINVAL;
ring->rcv_callback = cb_func;
ring->rcv_cb_data = cb_data;
return 0;
}