ringbuffer, helper, HAL_Driver (LL)

This commit is contained in:
Thomas Kuschel 2022-07-15 12:44:08 +02:00
parent 32162a2ec4
commit cf43818890
21 changed files with 36069 additions and 0 deletions

15
Core/Inc/helper.h Normal file
View File

@ -0,0 +1,15 @@
/*
* helper.h
*
* Created on: Jul 14, 2022
* Author: tom
*/
#ifndef INC_HELPER_H_
#define INC_HELPER_H_
char *ltrim(char *s);
char *rtrim(char *s);
char *trim(char *s);
#endif /* INC_HELPER_H_ */

63
Core/Inc/ringbuf.h Normal file
View File

@ -0,0 +1,63 @@
/*
* ringbuf.h
*
* Created on: Jul 12, 2022
* Author: tom
*/
#ifndef _INC_RINGBUF_H_
#define _INC_RINGBUF_H_
#define RING_STATISTICS_ENABLED 1
#define RINGBUF_MAX_READ_LEN 20
typedef enum {
RINGBUF_PARAM_NONE = 0x00,
RINGBUF_ALLOWOVERWRITE= 0x01,
} ringbuf_param_t;
#if !defined _SYS_ERRNO_H_ && !defined __ERRNO_H__ && !defined _STM32_SI5351_H_
typedef enum {
EPERM = 1, /*!< Operation not permitted */
EIO = 5, /*!< I/O error */
ENOMEM = 12, /*!< Out of memory */
EFAULT = 14, /*!< Bad address */
EBUSY = 16, /*!< Device or resource busy */
ENODEV = 19, /*!< No such device */
EINVAL = 22, /*!< Invalid argument */
EADDRINUSE = 98,/*!< Address already in use */
ETIMEDOUT = 116,/*!< Connection timed out */
} ringbuf_errno_t;
#endif
//extern ringbuf;
#define hring struct ringbuf *
//receive callback typedef definition
typedef void (*ringbuf_rcv_cb_t)(uint16_t delimiterfound, void* cb_data);
#if !defined min
#define min(a,b) ((a < b)? a : b)
#endif
hring ringbuf_create(size_t size, ringbuf_param_t param);
void ringbuf_destroy(hring);
int ringbuf_push(hring, const uint8_t *data, size_t size);
int ringbuf_pull(hring, uint8_t *data, size_t maxsize);
int ringbuf_clear(hring);
int ringbuf_free(hring);
int ringbuf_read(hring, char *str);
int ringbuf_write(hring, char *str);
int ringbuf_callback_register(hring, ringbuf_rcv_cb_t cb_func, void *cb_data);
int ringbuf_set_max_read_len(hring, int max_read_len);
int ringbuf_get_max_read_len(hring);
int ringbuf_is_empty(hring);
int ringbuf_dump(hring);
#if RING_STATISTICS_ENABLED
int ringbuf_statistics(hring);
int ringbuf_stat_writes(hring);
int ringbuf_stat_reads(hring);
int ringbuf_stat_overflow(hring);
#endif
#endif /* _INC_RINGBUF_H_ */

15
Core/Inc/ringbuf_test.h Normal file
View File

@ -0,0 +1,15 @@
/*
* ringbuf_test.h
*
* Created on: Jul 14, 2022
* Author: tom
*/
#ifndef INC_RINGBUF_TEST_H_
#define INC_RINGBUF_TEST_H_
void ringbuf_test(void);
#endif /* INC_RINGBUF_TEST_H_ */

27
Core/Src/helper.c Normal file
View File

@ -0,0 +1,27 @@
/*
* helper.c
*
* Created on: Jul 14, 2022
* Author: tom
*/
#include <string.h>
#include <ctype.h>
char *ltrim(char *s)
{
while(isspace((int)*s)) s++;
return s;
}
char *rtrim(char *s)
{
char* back = s + strlen(s);
while(isspace((int)*--back));
*(back+1) = '\0';
return s;
}
char *trim(char *s)
{
return rtrim(ltrim(s));
}

311
Core/Src/ringbuf.c Normal file
View File

@ -0,0 +1,311 @@
/**
******************************************************************************
* @file ringbuf.c
* @brief driver for a ring buffer used for UART RX
******************************************************************************
* @author: Thomas Kuschel KW4NZ
* created 2022-07-12
*
* A description can be found in the header file ringbuf.h
******************************************************************************/
#include <stdint.h>
#include <stddef.h>
#include <limits.h>
#include <stdlib.h> /* malloc */
#include <stdio.h> /* printf */
#include <string.h> /* memcpy */
#include "ringbuf.h"
/* macros */
#define MEM_USED(b) ((b->size + b->head - b->tail) % b->size)
#define MEM_FREE(b) ((b->size + b->tail - b->head - 1) % b->size + 1)
#if RING_STATISTICS_ENABLED
typedef struct stat {
uint32_t overflows;
uint32_t reads;
uint32_t writes;
} stat_t;
#endif
typedef struct ringbuf {
#if RING_STATISTICS_ENABLED
stat_t statistics;
#endif
ringbuf_rcv_cb_t rcv_callback;
void *rcv_cb_data;
uint8_t *buf;
uint16_t size;
uint16_t head;
uint16_t tail;
uint16_t delimiterfound;
uint16_t max_read_len;
unsigned full :1; // not implemented yet
unsigned halffull:1; // not implemented yet
unsigned overflow:1;
unsigned allowoverwrite:1;
} ringbuf_t;
struct ringbuf * ringbuf_create(size_t size, ringbuf_param_t param) {
struct ringbuf * rb;
if (size == 0 || size > USHRT_MAX)
return NULL;
// rb = malloc(sizeof(ringbuf_t) + size * sizeof(uint8_t));
rb = calloc(1, sizeof(ringbuf_t) + size * sizeof(uint8_t));
if (rb == NULL) {
puts("Memory not allocated.\n");
exit(0);
} else {
puts("Memory successfully allocated.\n");
// the data area is connected to the structure
rb->buf = (uint8_t *)rb + sizeof(ringbuf_t);
rb->size = (uint16_t)size;
// rb->head = rb->tail = rb->halffull = rb->overflow 0;
if (param & RINGBUF_ALLOWOVERWRITE)
rb->allowoverwrite = 1;
rb->max_read_len = RINGBUF_MAX_READ_LEN;
}
return rb;
}
void ringbuf_destroy(struct ringbuf *ring) {
if (ring != 0)
free(ring);
}
int ringbuf_dump(struct ringbuf *ring) {
if (ring == NULL)
return -EINVAL;
printf("Buffer: 0x%08x\n", (unsigned int) ring);
printf("Start: 0x%08x\n", (unsigned int) ring->buf);
printf("Size: total: %d used: %d free: %d\n", ring->size, MEM_USED(ring), MEM_FREE(ring));
printf("Head: %d\n", ring->head);
printf("Tail: %d\n", ring->tail);
printf("Empty: %s\n", (ring->head == ring->tail) ? "yes" : "no");
printf("Max read length: %d\n", ring->max_read_len);
for (size_t i = 0; i < ring->size; i += 16 ) {
for (size_t j = 0; j < 16 && (j + i) < ring->size; j++) {
//printf("%02x%s", *(ring->buf +i), ((i%4)==3)?(((i%16)==15)?"\n":" "):"");
printf("%02x%s", *(ring->buf + i + j), ((j%4)==3)?" ":"");
}
putchar(' ');
for (size_t j = 0; j < 16 && (j + i) < ring->size; j++) {
uint8_t b = *(ring->buf + i + j);
printf("%c", ((b >= ' ') && (b < 127))? b: '.');
}
puts("");
}
return 0;
}
int ringbuf_push(struct ringbuf *ring, const uint8_t *data, size_t size) {
size_t delimiterpos;
size_t delimiterfound = 0;
uint16_t head;
uint8_t *ptr;
if (ring == NULL || size == 0 || data == NULL || size > USHRT_MAX)
return -EINVAL;
if (size >= ring->size)
return -ENOMEM;
if (size >= (size_t)MEM_FREE(ring)) { // no free space available, but overwrite ?
#if RING_STATISTICS_ENABLED
ring->statistics.overflows++;
#endif
if (ring->allowoverwrite)
ring->overflow = 1;
else
return -ENOMEM;
}
head = ring->head;
if (head + size > ring->size) {
uint16_t remaining = ring->size - head;
memcpy(ring->buf + head, data, remaining);
ring->head = (uint16_t)(size - remaining);
memcpy(ring->buf, data + remaining, ring->head);
} else {
memcpy(ring->buf + head, data, size);
ring->head += (uint16_t)size;
}
for (delimiterpos = 0; delimiterpos < size; delimiterpos++) {
if (data[delimiterpos] == '\n' || data[delimiterpos] == 0 ) {
delimiterfound++;
ptr = ring->buf + ((head + delimiterpos) % ring->size);
*ptr = 0;
}
}
ring->head %= ring->size;
#if RING_STATISTICS_ENABLED
ring->statistics.writes +=size;
#endif
ring->delimiterfound = (uint16_t)delimiterfound;
//call registered callback function
if (ring->delimiterfound && ring->rcv_callback != NULL)
ring->rcv_callback(ring->delimiterfound, ring->rcv_cb_data);
return (int)size;
}
int ringbuf_clear(struct ringbuf *ring) {
if (ring == NULL)
return -EINVAL;
ring->tail = ring->head;
ring->full = ring->halffull = ring->overflow = 0;
return 0;
}
int ringbuf_is_empty(struct ringbuf *ring) {
if (ring == NULL)
return -EINVAL;
return (ring->tail == ring->head);
}
int ringbuf_pull(struct ringbuf *ring, uint8_t *data, size_t maxsize) {
size_t datasize;
if (ring == NULL || maxsize == 0 || data == NULL || maxsize > USHRT_MAX)
return -EINVAL;
datasize = min(maxsize, (size_t)MEM_USED(ring));
if (datasize > ring->size)
return -ENOMEM;
if ((ring->head > ring->tail) /*|| ring->full*/) {
memcpy(data, ring->buf + ring->tail, datasize);
ring->tail += (uint16_t)datasize;
} else {
if (ring->head < ring->tail) {
size_t remaining = ring->size -ring->tail;
if (datasize < remaining) {
memcpy(data, ring->buf + ring->tail, datasize);
ring->tail += (uint16_t)datasize;
} else {
memcpy(data, ring->buf + ring->tail, remaining);
ring->tail = (uint16_t)(datasize - remaining);
memcpy(data + remaining, ring->buf, ring->tail);
}
}
}
#if RING_STATISTICS_ENABLED
ring->statistics.reads += datasize;
#endif
ring->overflow = 0;
return (int)datasize;
}
int ringbuf_read(struct ringbuf *ring, char *str) {
int len = 0;
uint16_t tail = 0;
if (ring == NULL || str == NULL)
return -EINVAL;
*str = '\0';
if (ring->head == ring->tail){
return 0;
}
tail = ring->tail;
if (ring->head > ring->tail) {
if (ring->max_read_len < 2)
return -ENOMEM;
strncpy(str, (char *)(ring->buf + ring->tail), ring->max_read_len);
str[ring->max_read_len] = '\0';
for (int i = ring->tail; i < ring->head; i++) {
if (*(ring->buf + i) == 0) {
ring->tail = (uint16_t)i + 1;
break;
}
}
if (ring->tail == tail) {
// no \0 found
return 0;
}
} else {
int continu = 1;
int tail = 0;
strncpy(str, (char *)(ring->buf + ring->tail),(size_t)min(ring->size - ring->tail, ring->max_read_len));
str[ring->max_read_len] = '\0';
len = (int)strlen(str);
for (int i = ring->tail; i < ring->size; i++) {
if (*(ring->buf + i) == 0) {
tail = i + 1;
continu = 0;
break;
}
}
if (continu) {
strncpy(str + ring->size - ring->tail, (char *)ring->buf, (size_t)(ring->max_read_len - ring->size + ring->tail));
str[ring->max_read_len] = '\0';
continu = 1;
for (int i = 0; i < ring->head; i++) {
if (*(ring->buf + i) == 0) {
tail = i + 1;
continu = 0;
break;
}
}
if (continu)
return -EINVAL;
}
ring->tail = (uint16_t)tail;
}
len = (int)strlen(str);
ring->tail = ring->tail % ring->size;
#if RING_STATISTICS_ENABLED
ring->statistics.reads += (uint32_t)len + 1;
#endif
return len;
}
int ringbuf_write(struct ringbuf *ring, char *str) {
size_t len = 0;
len = (size_t)strlen(str);
if (len > 0)
return ringbuf_push(ring, (uint8_t *)str, len + 1);
else
return -EINVAL;
}
#if RING_STATISTICS_ENABLED
int ringbuf_statistics(struct ringbuf *ring) {
if (ring == NULL)
return -EINVAL;
puts("Ring Buffer Statistics:");
printf(" Bytes written: %ld\n", ring->statistics.writes);
printf(" Bytes read: %ld\n", ring->statistics.reads);
printf("# of overflows: %ld\n", ring->statistics.overflows);
return 0;
}
int ringbuf_stat_writes(struct ringbuf *ring) {
if (ring == NULL)
return -EINVAL;
return (int)ring->statistics.writes;
}
int ringbuf_stat_reads(struct ringbuf *ring) {
if (ring == NULL)
return -EINVAL;
return (int)ring->statistics.reads;
}
int ringbuf_stat_overflow(struct ringbuf *ring) {
if (ring == NULL)
return -EINVAL;
return (int)ring->statistics.overflows;
}
#endif
int ringbuf_callback_register(struct ringbuf *ring, ringbuf_rcv_cb_t cb_func, void *cb_data) {
if (ring == NULL)
return -EINVAL;
ring->rcv_callback = cb_func;
ring->rcv_cb_data = cb_data;
return 0;
}

144
Core/Src/ringbuf_test.c Normal file
View File

@ -0,0 +1,144 @@
/*
* ringbuf_test.c
*
* Created on: Jul 14, 2022
* Author: tom
*/
#include <assert.h>
#include <stdio.h>
#include "ringbuf.h"
#include <malloc.h>
void ringbuf_test(void) {
size_t usable_size = 0;
fprintf(stderr, "\n");
malloc_stats();
assert(1);
// assert(0); // ... assertion "0" failed: ...blabla bla
//1. Test Initialization
hring rb1 = ringbuf_create(512, RINGBUF_PARAM_NONE);
usable_size = malloc_usable_size(rb1);
fprintf(stdout, "Malloc Usable Size: %d\n", usable_size);
hring rb2 = ringbuf_create(512, RINGBUF_ALLOWOVERWRITE);
assert(rb1 != NULL);
assert(rb2 != NULL);
hring rb3 = ringbuf_create(512, RINGBUF_ALLOWOVERWRITE);
hring rb4 = ringbuf_create(512, RINGBUF_ALLOWOVERWRITE);
printf("Malloc Usable Size of rb1: %d\n", malloc_usable_size(rb1));
printf("Malloc Usable Size of rb2: %d\n", malloc_usable_size(rb2));
printf("Malloc Usable Size of rb3: %d\n", malloc_usable_size(rb3));
printf("Malloc Usable Size of rb4: %d\n", malloc_usable_size(rb4));
ringbuf_destroy(rb4);
malloc_stats();
ringbuf_destroy(rb3);
malloc_stats();
malloc_stats();
ringbuf_destroy(rb2);
malloc_stats();
ringbuf_destroy(rb1);
malloc_stats();
printf("rb1 after destroy is: 0x%08X\n", rb1);
}
#if 0
volatile int ret = 0;
ring = ringbuf_create(64,RINGBUF_ALLOWOVERWRITE);
if (ring == NULL)
printf("we have some problems ...\n");
uint8_t data[1024];
char str[1024]={0};
strcpy(str, "KW4NZ");
ret = ringbuf_dump(ring);
ret = ringbuf_write(ring, str);
printf("Writing string: %s\n", str);
ret = ringbuf_dump(ring);
ret = ringbuf_push(ring, (uint8_t *)"Ich gehe spazieren.", sizeof("Ich gehe spazieren."));
ret = ringbuf_dump(ring);
ret = ringbuf_push(ring, (uint8_t *)"NOCHMALS GEHE ICH RAUS.", sizeof("NOCHMALS GEHE ICH RAUS."));
ret = ringbuf_dump(ring);
ret = ringbuf_read(ring, str);
printf("STRING: %s\n", str);
ret = ringbuf_dump(ring);
ret = ringbuf_read(ring, str);
printf("STRING: %s\n", str);
ret = ringbuf_dump(ring);
ret = ringbuf_read(ring, str);
printf("STRING: %s\n", str);
ret = ringbuf_dump(ring);
strcpy(str, "OE3TKT,OE1TKT,OE7TKT");
ret = ringbuf_write(ring, str);
ret = ringbuf_dump(ring);
ret = ringbuf_read(ring, str);
printf("STRING: %s\n", str);
ret = ringbuf_dump(ring);
strcpy(str, "OE1TKT,OE3TKT,OE7TKT");
ret = ringbuf_write(ring, str);
strcpy(str, "KW4NZ");
ret = ringbuf_write(ring, str);
ret = ringbuf_dump(ring);
ret = ringbuf_read(ring, str);
printf("STRING: %s (OE1TKT,OE3TKT,OE7TKT)\n", str);
ret = ringbuf_read(ring, str);
printf("STRING: %s (KW4NZ)\n", str);
ret = ringbuf_pull(ring, data, 1024);
printf("Read %d bytes...\n", ret);
for (int i = 0; i < ret; i++)
putchar(data[i]);
puts("");
ringbuf_dump(ring);
ret = ringbuf_push(ring, (uint8_t *)"Eine 128-tägige Reise ist zu gewinnen!", sizeof("Eine 128-tägige Reise ist zu gewinnen!"));
ringbuf_dump(ring);
// ret = ringbuf_push(ring, (uint8_t *)"Eine 100-tägige Reise ist zu gewinnen!", sizeof("Eine 128-tägige Reise ist zu gewinnen!"));
// ret = ringbuf_push(ring, (uint8_t *)"Eine 90-tägige Reise ist zu gewinnen!", sizeof("Eine 90-tägige Reise ist zu gewinnen!"));
ret = ringbuf_push(ring, (uint8_t *)"ENDENDENDENDEND", sizeof("ENDENDENDENDEND"));
ringbuf_dump(ring);
ret = ringbuf_push(ring, (uint8_t *)"Vereinbarungen treffen zu.", sizeof("Vereinbarungen treffen zu."));
ringbuf_dump(ring);
ret = ringbuf_read(ring, str);
printf("String: %s (length: %d)\n", str, ret);
ret = ringbuf_dump(ring);
ret = ringbuf_read(ring, str);
printf("String: %s (length: %d)\n", str, ret);
ret = ringbuf_read(ring, str);
printf("String: %s (length: %d)\n", str, ret);
ret = ringbuf_pull(ring, data, 1024);
printf("Read %d bytes...\n", ret);
for (int i = 0; i < ret; i++)
putchar(data[i]);
puts("");
ringbuf_dump(ring);
ringbuf_clear(ring);
ringbuf_dump(ring);
#if RING_STATISTICS_ENABLED
ringbuf_statistics(ring);
#endif
#endif

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,637 @@
/**
******************************************************************************
* @file stm32l4xx_ll_cortex.h
* @author MCD Application Team
* @brief Header file of CORTEX LL module.
@verbatim
==============================================================================
##### How to use this driver #####
==============================================================================
[..]
The LL CORTEX driver contains a set of generic APIs that can be
used by user:
(+) SYSTICK configuration used by @ref LL_mDelay and @ref LL_Init1msTick
functions
(+) Low power mode configuration (SCB register of Cortex-MCU)
(+) MPU API to configure and enable regions
(+) API to access to MCU info (CPUID register)
(+) API to enable fault handler (SHCSR accesses)
@endverbatim
******************************************************************************
* @attention
*
* Copyright (c) 2017 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file in
* the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef STM32L4xx_LL_CORTEX_H
#define STM32L4xx_LL_CORTEX_H
#ifdef __cplusplus
extern "C" {
#endif
/* Includes ------------------------------------------------------------------*/
#include "stm32l4xx.h"
/** @addtogroup STM32L4xx_LL_Driver
* @{
*/
/** @defgroup CORTEX_LL CORTEX
* @{
*/
/* Private types -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private constants ---------------------------------------------------------*/
/* Private macros ------------------------------------------------------------*/
/* Exported types ------------------------------------------------------------*/
/* Exported constants --------------------------------------------------------*/
/** @defgroup CORTEX_LL_Exported_Constants CORTEX Exported Constants
* @{
*/
/** @defgroup CORTEX_LL_EC_CLKSOURCE_HCLK SYSTICK Clock Source
* @{
*/
#define LL_SYSTICK_CLKSOURCE_HCLK_DIV8 0x00000000U /*!< AHB clock divided by 8 selected as SysTick clock source.*/
#define LL_SYSTICK_CLKSOURCE_HCLK SysTick_CTRL_CLKSOURCE_Msk /*!< AHB clock selected as SysTick clock source. */
/**
* @}
*/
/** @defgroup CORTEX_LL_EC_FAULT Handler Fault type
* @{
*/
#define LL_HANDLER_FAULT_USG SCB_SHCSR_USGFAULTENA_Msk /*!< Usage fault */
#define LL_HANDLER_FAULT_BUS SCB_SHCSR_BUSFAULTENA_Msk /*!< Bus fault */
#define LL_HANDLER_FAULT_MEM SCB_SHCSR_MEMFAULTENA_Msk /*!< Memory management fault */
/**
* @}
*/
#if __MPU_PRESENT
/** @defgroup CORTEX_LL_EC_CTRL_HFNMI_PRIVDEF MPU Control
* @{
*/
#define LL_MPU_CTRL_HFNMI_PRIVDEF_NONE 0x00000000U /*!< Disable NMI and privileged SW access */
#define LL_MPU_CTRL_HARDFAULT_NMI MPU_CTRL_HFNMIENA_Msk /*!< Enables the operation of MPU during hard fault, NMI, and FAULTMASK handlers */
#define LL_MPU_CTRL_PRIVILEGED_DEFAULT MPU_CTRL_PRIVDEFENA_Msk /*!< Enable privileged software access to default memory map */
#define LL_MPU_CTRL_HFNMI_PRIVDEF (MPU_CTRL_HFNMIENA_Msk | MPU_CTRL_PRIVDEFENA_Msk) /*!< Enable NMI and privileged SW access */
/**
* @}
*/
/** @defgroup CORTEX_LL_EC_REGION MPU Region Number
* @{
*/
#define LL_MPU_REGION_NUMBER0 0x00U /*!< REGION Number 0 */
#define LL_MPU_REGION_NUMBER1 0x01U /*!< REGION Number 1 */
#define LL_MPU_REGION_NUMBER2 0x02U /*!< REGION Number 2 */
#define LL_MPU_REGION_NUMBER3 0x03U /*!< REGION Number 3 */
#define LL_MPU_REGION_NUMBER4 0x04U /*!< REGION Number 4 */
#define LL_MPU_REGION_NUMBER5 0x05U /*!< REGION Number 5 */
#define LL_MPU_REGION_NUMBER6 0x06U /*!< REGION Number 6 */
#define LL_MPU_REGION_NUMBER7 0x07U /*!< REGION Number 7 */
/**
* @}
*/
/** @defgroup CORTEX_LL_EC_REGION_SIZE MPU Region Size
* @{
*/
#define LL_MPU_REGION_SIZE_32B (0x04U << MPU_RASR_SIZE_Pos) /*!< 32B Size of the MPU protection region */
#define LL_MPU_REGION_SIZE_64B (0x05U << MPU_RASR_SIZE_Pos) /*!< 64B Size of the MPU protection region */
#define LL_MPU_REGION_SIZE_128B (0x06U << MPU_RASR_SIZE_Pos) /*!< 128B Size of the MPU protection region */
#define LL_MPU_REGION_SIZE_256B (0x07U << MPU_RASR_SIZE_Pos) /*!< 256B Size of the MPU protection region */
#define LL_MPU_REGION_SIZE_512B (0x08U << MPU_RASR_SIZE_Pos) /*!< 512B Size of the MPU protection region */
#define LL_MPU_REGION_SIZE_1KB (0x09U << MPU_RASR_SIZE_Pos) /*!< 1KB Size of the MPU protection region */
#define LL_MPU_REGION_SIZE_2KB (0x0AU << MPU_RASR_SIZE_Pos) /*!< 2KB Size of the MPU protection region */
#define LL_MPU_REGION_SIZE_4KB (0x0BU << MPU_RASR_SIZE_Pos) /*!< 4KB Size of the MPU protection region */
#define LL_MPU_REGION_SIZE_8KB (0x0CU << MPU_RASR_SIZE_Pos) /*!< 8KB Size of the MPU protection region */
#define LL_MPU_REGION_SIZE_16KB (0x0DU << MPU_RASR_SIZE_Pos) /*!< 16KB Size of the MPU protection region */
#define LL_MPU_REGION_SIZE_32KB (0x0EU << MPU_RASR_SIZE_Pos) /*!< 32KB Size of the MPU protection region */
#define LL_MPU_REGION_SIZE_64KB (0x0FU << MPU_RASR_SIZE_Pos) /*!< 64KB Size of the MPU protection region */
#define LL_MPU_REGION_SIZE_128KB (0x10U << MPU_RASR_SIZE_Pos) /*!< 128KB Size of the MPU protection region */
#define LL_MPU_REGION_SIZE_256KB (0x11U << MPU_RASR_SIZE_Pos) /*!< 256KB Size of the MPU protection region */
#define LL_MPU_REGION_SIZE_512KB (0x12U << MPU_RASR_SIZE_Pos) /*!< 512KB Size of the MPU protection region */
#define LL_MPU_REGION_SIZE_1MB (0x13U << MPU_RASR_SIZE_Pos) /*!< 1MB Size of the MPU protection region */
#define LL_MPU_REGION_SIZE_2MB (0x14U << MPU_RASR_SIZE_Pos) /*!< 2MB Size of the MPU protection region */
#define LL_MPU_REGION_SIZE_4MB (0x15U << MPU_RASR_SIZE_Pos) /*!< 4MB Size of the MPU protection region */
#define LL_MPU_REGION_SIZE_8MB (0x16U << MPU_RASR_SIZE_Pos) /*!< 8MB Size of the MPU protection region */
#define LL_MPU_REGION_SIZE_16MB (0x17U << MPU_RASR_SIZE_Pos) /*!< 16MB Size of the MPU protection region */
#define LL_MPU_REGION_SIZE_32MB (0x18U << MPU_RASR_SIZE_Pos) /*!< 32MB Size of the MPU protection region */
#define LL_MPU_REGION_SIZE_64MB (0x19U << MPU_RASR_SIZE_Pos) /*!< 64MB Size of the MPU protection region */
#define LL_MPU_REGION_SIZE_128MB (0x1AU << MPU_RASR_SIZE_Pos) /*!< 128MB Size of the MPU protection region */
#define LL_MPU_REGION_SIZE_256MB (0x1BU << MPU_RASR_SIZE_Pos) /*!< 256MB Size of the MPU protection region */
#define LL_MPU_REGION_SIZE_512MB (0x1CU << MPU_RASR_SIZE_Pos) /*!< 512MB Size of the MPU protection region */
#define LL_MPU_REGION_SIZE_1GB (0x1DU << MPU_RASR_SIZE_Pos) /*!< 1GB Size of the MPU protection region */
#define LL_MPU_REGION_SIZE_2GB (0x1EU << MPU_RASR_SIZE_Pos) /*!< 2GB Size of the MPU protection region */
#define LL_MPU_REGION_SIZE_4GB (0x1FU << MPU_RASR_SIZE_Pos) /*!< 4GB Size of the MPU protection region */
/**
* @}
*/
/** @defgroup CORTEX_LL_EC_REGION_PRIVILEDGES MPU Region Privileges
* @{
*/
#define LL_MPU_REGION_NO_ACCESS (0x00U << MPU_RASR_AP_Pos) /*!< No access*/
#define LL_MPU_REGION_PRIV_RW (0x01U << MPU_RASR_AP_Pos) /*!< RW privileged (privileged access only)*/
#define LL_MPU_REGION_PRIV_RW_URO (0x02U << MPU_RASR_AP_Pos) /*!< RW privileged - RO user (Write in a user program generates a fault) */
#define LL_MPU_REGION_FULL_ACCESS (0x03U << MPU_RASR_AP_Pos) /*!< RW privileged & user (Full access) */
#define LL_MPU_REGION_PRIV_RO (0x05U << MPU_RASR_AP_Pos) /*!< RO privileged (privileged read only)*/
#define LL_MPU_REGION_PRIV_RO_URO (0x06U << MPU_RASR_AP_Pos) /*!< RO privileged & user (read only) */
/**
* @}
*/
/** @defgroup CORTEX_LL_EC_TEX MPU TEX Level
* @{
*/
#define LL_MPU_TEX_LEVEL0 (0x00U << MPU_RASR_TEX_Pos) /*!< b000 for TEX bits */
#define LL_MPU_TEX_LEVEL1 (0x01U << MPU_RASR_TEX_Pos) /*!< b001 for TEX bits */
#define LL_MPU_TEX_LEVEL2 (0x02U << MPU_RASR_TEX_Pos) /*!< b010 for TEX bits */
#define LL_MPU_TEX_LEVEL4 (0x04U << MPU_RASR_TEX_Pos) /*!< b100 for TEX bits */
/**
* @}
*/
/** @defgroup CORTEX_LL_EC_INSTRUCTION_ACCESS MPU Instruction Access
* @{
*/
#define LL_MPU_INSTRUCTION_ACCESS_ENABLE 0x00U /*!< Instruction fetches enabled */
#define LL_MPU_INSTRUCTION_ACCESS_DISABLE MPU_RASR_XN_Msk /*!< Instruction fetches disabled*/
/**
* @}
*/
/** @defgroup CORTEX_LL_EC_SHAREABLE_ACCESS MPU Shareable Access
* @{
*/
#define LL_MPU_ACCESS_SHAREABLE MPU_RASR_S_Msk /*!< Shareable memory attribute */
#define LL_MPU_ACCESS_NOT_SHAREABLE 0x00U /*!< Not Shareable memory attribute */
/**
* @}
*/
/** @defgroup CORTEX_LL_EC_CACHEABLE_ACCESS MPU Cacheable Access
* @{
*/
#define LL_MPU_ACCESS_CACHEABLE MPU_RASR_C_Msk /*!< Cacheable memory attribute */
#define LL_MPU_ACCESS_NOT_CACHEABLE 0x00U /*!< Not Cacheable memory attribute */
/**
* @}
*/
/** @defgroup CORTEX_LL_EC_BUFFERABLE_ACCESS MPU Bufferable Access
* @{
*/
#define LL_MPU_ACCESS_BUFFERABLE MPU_RASR_B_Msk /*!< Bufferable memory attribute */
#define LL_MPU_ACCESS_NOT_BUFFERABLE 0x00U /*!< Not Bufferable memory attribute */
/**
* @}
*/
#endif /* __MPU_PRESENT */
/**
* @}
*/
/* Exported macro ------------------------------------------------------------*/
/* Exported functions --------------------------------------------------------*/
/** @defgroup CORTEX_LL_Exported_Functions CORTEX Exported Functions
* @{
*/
/** @defgroup CORTEX_LL_EF_SYSTICK SYSTICK
* @{
*/
/**
* @brief This function checks if the Systick counter flag is active or not.
* @note It can be used in timeout function on application side.
* @rmtoll STK_CTRL COUNTFLAG LL_SYSTICK_IsActiveCounterFlag
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_SYSTICK_IsActiveCounterFlag(void)
{
return ((SysTick->CTRL & SysTick_CTRL_COUNTFLAG_Msk) == (SysTick_CTRL_COUNTFLAG_Msk));
}
/**
* @brief Configures the SysTick clock source
* @rmtoll STK_CTRL CLKSOURCE LL_SYSTICK_SetClkSource
* @param Source This parameter can be one of the following values:
* @arg @ref LL_SYSTICK_CLKSOURCE_HCLK_DIV8
* @arg @ref LL_SYSTICK_CLKSOURCE_HCLK
* @retval None
*/
__STATIC_INLINE void LL_SYSTICK_SetClkSource(uint32_t Source)
{
if (Source == LL_SYSTICK_CLKSOURCE_HCLK)
{
SET_BIT(SysTick->CTRL, LL_SYSTICK_CLKSOURCE_HCLK);
}
else
{
CLEAR_BIT(SysTick->CTRL, LL_SYSTICK_CLKSOURCE_HCLK);
}
}
/**
* @brief Get the SysTick clock source
* @rmtoll STK_CTRL CLKSOURCE LL_SYSTICK_GetClkSource
* @retval Returned value can be one of the following values:
* @arg @ref LL_SYSTICK_CLKSOURCE_HCLK_DIV8
* @arg @ref LL_SYSTICK_CLKSOURCE_HCLK
*/
__STATIC_INLINE uint32_t LL_SYSTICK_GetClkSource(void)
{
return READ_BIT(SysTick->CTRL, LL_SYSTICK_CLKSOURCE_HCLK);
}
/**
* @brief Enable SysTick exception request
* @rmtoll STK_CTRL TICKINT LL_SYSTICK_EnableIT
* @retval None
*/
__STATIC_INLINE void LL_SYSTICK_EnableIT(void)
{
SET_BIT(SysTick->CTRL, SysTick_CTRL_TICKINT_Msk);
}
/**
* @brief Disable SysTick exception request
* @rmtoll STK_CTRL TICKINT LL_SYSTICK_DisableIT
* @retval None
*/
__STATIC_INLINE void LL_SYSTICK_DisableIT(void)
{
CLEAR_BIT(SysTick->CTRL, SysTick_CTRL_TICKINT_Msk);
}
/**
* @brief Checks if the SYSTICK interrupt is enabled or disabled.
* @rmtoll STK_CTRL TICKINT LL_SYSTICK_IsEnabledIT
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_SYSTICK_IsEnabledIT(void)
{
return (READ_BIT(SysTick->CTRL, SysTick_CTRL_TICKINT_Msk) == (SysTick_CTRL_TICKINT_Msk));
}
/**
* @}
*/
/** @defgroup CORTEX_LL_EF_LOW_POWER_MODE LOW POWER MODE
* @{
*/
/**
* @brief Processor uses sleep as its low power mode
* @rmtoll SCB_SCR SLEEPDEEP LL_LPM_EnableSleep
* @retval None
*/
__STATIC_INLINE void LL_LPM_EnableSleep(void)
{
/* Clear SLEEPDEEP bit of Cortex System Control Register */
CLEAR_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPDEEP_Msk));
}
/**
* @brief Processor uses deep sleep as its low power mode
* @rmtoll SCB_SCR SLEEPDEEP LL_LPM_EnableDeepSleep
* @retval None
*/
__STATIC_INLINE void LL_LPM_EnableDeepSleep(void)
{
/* Set SLEEPDEEP bit of Cortex System Control Register */
SET_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPDEEP_Msk));
}
/**
* @brief Configures sleep-on-exit when returning from Handler mode to Thread mode.
* @note Setting this bit to 1 enables an interrupt-driven application to avoid returning to an
* empty main application.
* @rmtoll SCB_SCR SLEEPONEXIT LL_LPM_EnableSleepOnExit
* @retval None
*/
__STATIC_INLINE void LL_LPM_EnableSleepOnExit(void)
{
/* Set SLEEPONEXIT bit of Cortex System Control Register */
SET_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPONEXIT_Msk));
}
/**
* @brief Do not sleep when returning to Thread mode.
* @rmtoll SCB_SCR SLEEPONEXIT LL_LPM_DisableSleepOnExit
* @retval None
*/
__STATIC_INLINE void LL_LPM_DisableSleepOnExit(void)
{
/* Clear SLEEPONEXIT bit of Cortex System Control Register */
CLEAR_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPONEXIT_Msk));
}
/**
* @brief Enabled events and all interrupts, including disabled interrupts, can wakeup the
* processor.
* @rmtoll SCB_SCR SEVEONPEND LL_LPM_EnableEventOnPend
* @retval None
*/
__STATIC_INLINE void LL_LPM_EnableEventOnPend(void)
{
/* Set SEVEONPEND bit of Cortex System Control Register */
SET_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SEVONPEND_Msk));
}
/**
* @brief Only enabled interrupts or events can wakeup the processor, disabled interrupts are
* excluded
* @rmtoll SCB_SCR SEVEONPEND LL_LPM_DisableEventOnPend
* @retval None
*/
__STATIC_INLINE void LL_LPM_DisableEventOnPend(void)
{
/* Clear SEVEONPEND bit of Cortex System Control Register */
CLEAR_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SEVONPEND_Msk));
}
/**
* @}
*/
/** @defgroup CORTEX_LL_EF_HANDLER HANDLER
* @{
*/
/**
* @brief Enable a fault in System handler control register (SHCSR)
* @rmtoll SCB_SHCSR MEMFAULTENA LL_HANDLER_EnableFault
* @param Fault This parameter can be a combination of the following values:
* @arg @ref LL_HANDLER_FAULT_USG
* @arg @ref LL_HANDLER_FAULT_BUS
* @arg @ref LL_HANDLER_FAULT_MEM
* @retval None
*/
__STATIC_INLINE void LL_HANDLER_EnableFault(uint32_t Fault)
{
/* Enable the system handler fault */
SET_BIT(SCB->SHCSR, Fault);
}
/**
* @brief Disable a fault in System handler control register (SHCSR)
* @rmtoll SCB_SHCSR MEMFAULTENA LL_HANDLER_DisableFault
* @param Fault This parameter can be a combination of the following values:
* @arg @ref LL_HANDLER_FAULT_USG
* @arg @ref LL_HANDLER_FAULT_BUS
* @arg @ref LL_HANDLER_FAULT_MEM
* @retval None
*/
__STATIC_INLINE void LL_HANDLER_DisableFault(uint32_t Fault)
{
/* Disable the system handler fault */
CLEAR_BIT(SCB->SHCSR, Fault);
}
/**
* @}
*/
/** @defgroup CORTEX_LL_EF_MCU_INFO MCU INFO
* @{
*/
/**
* @brief Get Implementer code
* @rmtoll SCB_CPUID IMPLEMENTER LL_CPUID_GetImplementer
* @retval Value should be equal to 0x41 for ARM
*/
__STATIC_INLINE uint32_t LL_CPUID_GetImplementer(void)
{
return (uint32_t)(READ_BIT(SCB->CPUID, SCB_CPUID_IMPLEMENTER_Msk) >> SCB_CPUID_IMPLEMENTER_Pos);
}
/**
* @brief Get Variant number (The r value in the rnpn product revision identifier)
* @rmtoll SCB_CPUID VARIANT LL_CPUID_GetVariant
* @retval Value between 0 and 255 (0x0: revision 0)
*/
__STATIC_INLINE uint32_t LL_CPUID_GetVariant(void)
{
return (uint32_t)(READ_BIT(SCB->CPUID, SCB_CPUID_VARIANT_Msk) >> SCB_CPUID_VARIANT_Pos);
}
/**
* @brief Get Constant number
* @rmtoll SCB_CPUID ARCHITECTURE LL_CPUID_GetConstant
* @retval Value should be equal to 0xF for Cortex-M4 devices
*/
__STATIC_INLINE uint32_t LL_CPUID_GetConstant(void)
{
return (uint32_t)(READ_BIT(SCB->CPUID, SCB_CPUID_ARCHITECTURE_Msk) >> SCB_CPUID_ARCHITECTURE_Pos);
}
/**
* @brief Get Part number
* @rmtoll SCB_CPUID PARTNO LL_CPUID_GetParNo
* @retval Value should be equal to 0xC24 for Cortex-M4
*/
__STATIC_INLINE uint32_t LL_CPUID_GetParNo(void)
{
return (uint32_t)(READ_BIT(SCB->CPUID, SCB_CPUID_PARTNO_Msk) >> SCB_CPUID_PARTNO_Pos);
}
/**
* @brief Get Revision number (The p value in the rnpn product revision identifier, indicates patch release)
* @rmtoll SCB_CPUID REVISION LL_CPUID_GetRevision
* @retval Value between 0 and 255 (0x1: patch 1)
*/
__STATIC_INLINE uint32_t LL_CPUID_GetRevision(void)
{
return (uint32_t)(READ_BIT(SCB->CPUID, SCB_CPUID_REVISION_Msk) >> SCB_CPUID_REVISION_Pos);
}
/**
* @}
*/
#if __MPU_PRESENT
/** @defgroup CORTEX_LL_EF_MPU MPU
* @{
*/
/**
* @brief Enable MPU with input options
* @rmtoll MPU_CTRL ENABLE LL_MPU_Enable
* @param Options This parameter can be one of the following values:
* @arg @ref LL_MPU_CTRL_HFNMI_PRIVDEF_NONE
* @arg @ref LL_MPU_CTRL_HARDFAULT_NMI
* @arg @ref LL_MPU_CTRL_PRIVILEGED_DEFAULT
* @arg @ref LL_MPU_CTRL_HFNMI_PRIVDEF
* @retval None
*/
__STATIC_INLINE void LL_MPU_Enable(uint32_t Options)
{
/* Enable the MPU*/
WRITE_REG(MPU->CTRL, (MPU_CTRL_ENABLE_Msk | Options));
/* Ensure MPU settings take effects */
__DSB();
/* Sequence instruction fetches using update settings */
__ISB();
}
/**
* @brief Disable MPU
* @rmtoll MPU_CTRL ENABLE LL_MPU_Disable
* @retval None
*/
__STATIC_INLINE void LL_MPU_Disable(void)
{
/* Make sure outstanding transfers are done */
__DMB();
/* Disable MPU*/
WRITE_REG(MPU->CTRL, 0U);
}
/**
* @brief Check if MPU is enabled or not
* @rmtoll MPU_CTRL ENABLE LL_MPU_IsEnabled
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_MPU_IsEnabled(void)
{
return (READ_BIT(MPU->CTRL, MPU_CTRL_ENABLE_Msk) == (MPU_CTRL_ENABLE_Msk));
}
/**
* @brief Enable a MPU region
* @rmtoll MPU_RASR ENABLE LL_MPU_EnableRegion
* @param Region This parameter can be one of the following values:
* @arg @ref LL_MPU_REGION_NUMBER0
* @arg @ref LL_MPU_REGION_NUMBER1
* @arg @ref LL_MPU_REGION_NUMBER2
* @arg @ref LL_MPU_REGION_NUMBER3
* @arg @ref LL_MPU_REGION_NUMBER4
* @arg @ref LL_MPU_REGION_NUMBER5
* @arg @ref LL_MPU_REGION_NUMBER6
* @arg @ref LL_MPU_REGION_NUMBER7
* @retval None
*/
__STATIC_INLINE void LL_MPU_EnableRegion(uint32_t Region)
{
/* Set Region number */
WRITE_REG(MPU->RNR, Region);
/* Enable the MPU region */
SET_BIT(MPU->RASR, MPU_RASR_ENABLE_Msk);
}
/**
* @brief Configure and enable a region
* @rmtoll MPU_RNR REGION LL_MPU_ConfigRegion\n
* MPU_RBAR REGION LL_MPU_ConfigRegion\n
* MPU_RBAR ADDR LL_MPU_ConfigRegion\n
* MPU_RASR XN LL_MPU_ConfigRegion\n
* MPU_RASR AP LL_MPU_ConfigRegion\n
* MPU_RASR S LL_MPU_ConfigRegion\n
* MPU_RASR C LL_MPU_ConfigRegion\n
* MPU_RASR B LL_MPU_ConfigRegion\n
* MPU_RASR SIZE LL_MPU_ConfigRegion
* @param Region This parameter can be one of the following values:
* @arg @ref LL_MPU_REGION_NUMBER0
* @arg @ref LL_MPU_REGION_NUMBER1
* @arg @ref LL_MPU_REGION_NUMBER2
* @arg @ref LL_MPU_REGION_NUMBER3
* @arg @ref LL_MPU_REGION_NUMBER4
* @arg @ref LL_MPU_REGION_NUMBER5
* @arg @ref LL_MPU_REGION_NUMBER6
* @arg @ref LL_MPU_REGION_NUMBER7
* @param Address Value of region base address
* @param SubRegionDisable Sub-region disable value between Min_Data = 0x00 and Max_Data = 0xFF
* @param Attributes This parameter can be a combination of the following values:
* @arg @ref LL_MPU_REGION_SIZE_32B or @ref LL_MPU_REGION_SIZE_64B or @ref LL_MPU_REGION_SIZE_128B or @ref LL_MPU_REGION_SIZE_256B or @ref LL_MPU_REGION_SIZE_512B
* or @ref LL_MPU_REGION_SIZE_1KB or @ref LL_MPU_REGION_SIZE_2KB or @ref LL_MPU_REGION_SIZE_4KB or @ref LL_MPU_REGION_SIZE_8KB or @ref LL_MPU_REGION_SIZE_16KB
* or @ref LL_MPU_REGION_SIZE_32KB or @ref LL_MPU_REGION_SIZE_64KB or @ref LL_MPU_REGION_SIZE_128KB or @ref LL_MPU_REGION_SIZE_256KB or @ref LL_MPU_REGION_SIZE_512KB
* or @ref LL_MPU_REGION_SIZE_1MB or @ref LL_MPU_REGION_SIZE_2MB or @ref LL_MPU_REGION_SIZE_4MB or @ref LL_MPU_REGION_SIZE_8MB or @ref LL_MPU_REGION_SIZE_16MB
* or @ref LL_MPU_REGION_SIZE_32MB or @ref LL_MPU_REGION_SIZE_64MB or @ref LL_MPU_REGION_SIZE_128MB or @ref LL_MPU_REGION_SIZE_256MB or @ref LL_MPU_REGION_SIZE_512MB
* or @ref LL_MPU_REGION_SIZE_1GB or @ref LL_MPU_REGION_SIZE_2GB or @ref LL_MPU_REGION_SIZE_4GB
* @arg @ref LL_MPU_REGION_NO_ACCESS or @ref LL_MPU_REGION_PRIV_RW or @ref LL_MPU_REGION_PRIV_RW_URO or @ref LL_MPU_REGION_FULL_ACCESS
* or @ref LL_MPU_REGION_PRIV_RO or @ref LL_MPU_REGION_PRIV_RO_URO
* @arg @ref LL_MPU_TEX_LEVEL0 or @ref LL_MPU_TEX_LEVEL1 or @ref LL_MPU_TEX_LEVEL2 or @ref LL_MPU_TEX_LEVEL4
* @arg @ref LL_MPU_INSTRUCTION_ACCESS_ENABLE or @ref LL_MPU_INSTRUCTION_ACCESS_DISABLE
* @arg @ref LL_MPU_ACCESS_SHAREABLE or @ref LL_MPU_ACCESS_NOT_SHAREABLE
* @arg @ref LL_MPU_ACCESS_CACHEABLE or @ref LL_MPU_ACCESS_NOT_CACHEABLE
* @arg @ref LL_MPU_ACCESS_BUFFERABLE or @ref LL_MPU_ACCESS_NOT_BUFFERABLE
* @retval None
*/
__STATIC_INLINE void LL_MPU_ConfigRegion(uint32_t Region, uint32_t SubRegionDisable, uint32_t Address, uint32_t Attributes)
{
/* Set Region number */
WRITE_REG(MPU->RNR, Region);
/* Set base address */
WRITE_REG(MPU->RBAR, (Address & 0xFFFFFFE0U));
/* Configure MPU */
WRITE_REG(MPU->RASR, (MPU_RASR_ENABLE_Msk | Attributes | SubRegionDisable << MPU_RASR_SRD_Pos));
}
/**
* @brief Disable a region
* @rmtoll MPU_RNR REGION LL_MPU_DisableRegion\n
* MPU_RASR ENABLE LL_MPU_DisableRegion
* @param Region This parameter can be one of the following values:
* @arg @ref LL_MPU_REGION_NUMBER0
* @arg @ref LL_MPU_REGION_NUMBER1
* @arg @ref LL_MPU_REGION_NUMBER2
* @arg @ref LL_MPU_REGION_NUMBER3
* @arg @ref LL_MPU_REGION_NUMBER4
* @arg @ref LL_MPU_REGION_NUMBER5
* @arg @ref LL_MPU_REGION_NUMBER6
* @arg @ref LL_MPU_REGION_NUMBER7
* @retval None
*/
__STATIC_INLINE void LL_MPU_DisableRegion(uint32_t Region)
{
/* Set Region number */
WRITE_REG(MPU->RNR, Region);
/* Disable the MPU region */
CLEAR_BIT(MPU->RASR, MPU_RASR_ENABLE_Msk);
}
/**
* @}
*/
#endif /* __MPU_PRESENT */
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
#ifdef __cplusplus
}
#endif
#endif /* STM32L4xx_LL_CORTEX_H */

View File

@ -0,0 +1,785 @@
/**
******************************************************************************
* @file stm32l4xx_ll_crs.h
* @author MCD Application Team
* @brief Header file of CRS LL module.
******************************************************************************
* @attention
*
* Copyright (c) 2017 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef STM32L4xx_LL_CRS_H
#define STM32L4xx_LL_CRS_H
#ifdef __cplusplus
extern "C" {
#endif
/* Includes ------------------------------------------------------------------*/
#include "stm32l4xx.h"
/** @addtogroup STM32L4xx_LL_Driver
* @{
*/
#if defined(CRS)
/** @defgroup CRS_LL CRS
* @{
*/
/* Private types -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private constants ---------------------------------------------------------*/
/* Private macros ------------------------------------------------------------*/
/* Exported types ------------------------------------------------------------*/
/* Exported constants --------------------------------------------------------*/
/** @defgroup CRS_LL_Exported_Constants CRS Exported Constants
* @{
*/
/** @defgroup CRS_LL_EC_GET_FLAG Get Flags Defines
* @brief Flags defines which can be used with LL_CRS_ReadReg function
* @{
*/
#define LL_CRS_ISR_SYNCOKF CRS_ISR_SYNCOKF
#define LL_CRS_ISR_SYNCWARNF CRS_ISR_SYNCWARNF
#define LL_CRS_ISR_ERRF CRS_ISR_ERRF
#define LL_CRS_ISR_ESYNCF CRS_ISR_ESYNCF
#define LL_CRS_ISR_SYNCERR CRS_ISR_SYNCERR
#define LL_CRS_ISR_SYNCMISS CRS_ISR_SYNCMISS
#define LL_CRS_ISR_TRIMOVF CRS_ISR_TRIMOVF
/**
* @}
*/
/** @defgroup CRS_LL_EC_IT IT Defines
* @brief IT defines which can be used with LL_CRS_ReadReg and LL_CRS_WriteReg functions
* @{
*/
#define LL_CRS_CR_SYNCOKIE CRS_CR_SYNCOKIE
#define LL_CRS_CR_SYNCWARNIE CRS_CR_SYNCWARNIE
#define LL_CRS_CR_ERRIE CRS_CR_ERRIE
#define LL_CRS_CR_ESYNCIE CRS_CR_ESYNCIE
/**
* @}
*/
/** @defgroup CRS_LL_EC_SYNC_DIV Synchronization Signal Divider
* @{
*/
#define LL_CRS_SYNC_DIV_1 ((uint32_t)0x00U) /*!< Synchro Signal not divided (default) */
#define LL_CRS_SYNC_DIV_2 CRS_CFGR_SYNCDIV_0 /*!< Synchro Signal divided by 2 */
#define LL_CRS_SYNC_DIV_4 CRS_CFGR_SYNCDIV_1 /*!< Synchro Signal divided by 4 */
#define LL_CRS_SYNC_DIV_8 (CRS_CFGR_SYNCDIV_1 | CRS_CFGR_SYNCDIV_0) /*!< Synchro Signal divided by 8 */
#define LL_CRS_SYNC_DIV_16 CRS_CFGR_SYNCDIV_2 /*!< Synchro Signal divided by 16 */
#define LL_CRS_SYNC_DIV_32 (CRS_CFGR_SYNCDIV_2 | CRS_CFGR_SYNCDIV_0) /*!< Synchro Signal divided by 32 */
#define LL_CRS_SYNC_DIV_64 (CRS_CFGR_SYNCDIV_2 | CRS_CFGR_SYNCDIV_1) /*!< Synchro Signal divided by 64 */
#define LL_CRS_SYNC_DIV_128 CRS_CFGR_SYNCDIV /*!< Synchro Signal divided by 128 */
/**
* @}
*/
/** @defgroup CRS_LL_EC_SYNC_SOURCE Synchronization Signal Source
* @{
*/
#define LL_CRS_SYNC_SOURCE_GPIO ((uint32_t)0x00U) /*!< Synchro Signal source GPIO */
#define LL_CRS_SYNC_SOURCE_LSE CRS_CFGR_SYNCSRC_0 /*!< Synchro Signal source LSE */
#define LL_CRS_SYNC_SOURCE_USB CRS_CFGR_SYNCSRC_1 /*!< Synchro Signal source USB SOF (default)*/
/**
* @}
*/
/** @defgroup CRS_LL_EC_SYNC_POLARITY Synchronization Signal Polarity
* @{
*/
#define LL_CRS_SYNC_POLARITY_RISING ((uint32_t)0x00U) /*!< Synchro Active on rising edge (default) */
#define LL_CRS_SYNC_POLARITY_FALLING CRS_CFGR_SYNCPOL /*!< Synchro Active on falling edge */
/**
* @}
*/
/** @defgroup CRS_LL_EC_FREQERRORDIR Frequency Error Direction
* @{
*/
#define LL_CRS_FREQ_ERROR_DIR_UP ((uint32_t)0x00U) /*!< Upcounting direction, the actual frequency is above the target */
#define LL_CRS_FREQ_ERROR_DIR_DOWN ((uint32_t)CRS_ISR_FEDIR) /*!< Downcounting direction, the actual frequency is below the target */
/**
* @}
*/
/** @defgroup CRS_LL_EC_DEFAULTVALUES Default Values
* @{
*/
/**
* @brief Reset value of the RELOAD field
* @note The reset value of the RELOAD field corresponds to a target frequency of 48 MHz
* and a synchronization signal frequency of 1 kHz (SOF signal from USB)
*/
#define LL_CRS_RELOADVALUE_DEFAULT ((uint32_t)0xBB7FU)
/**
* @brief Reset value of Frequency error limit.
*/
#define LL_CRS_ERRORLIMIT_DEFAULT ((uint32_t)0x22U)
/**
* @brief Reset value of the HSI48 Calibration field
* @note The default value is 64 for STM32L412xx/L422xx, 32 otherwise, which corresponds
* to the middle of the trimming interval.
* The trimming step is around 67 kHz between two consecutive TRIM steps.
* A higher TRIM value corresponds to a higher output frequency
*/
#if defined (STM32L412xx) || defined (STM32L422xx)
#define LL_CRS_HSI48CALIBRATION_DEFAULT ((uint32_t)64U)
#else
#define LL_CRS_HSI48CALIBRATION_DEFAULT ((uint32_t)32U)
#endif
/**
* @}
*/
/**
* @}
*/
/* Exported macro ------------------------------------------------------------*/
/** @defgroup CRS_LL_Exported_Macros CRS Exported Macros
* @{
*/
/** @defgroup CRS_LL_EM_WRITE_READ Common Write and read registers Macros
* @{
*/
/**
* @brief Write a value in CRS register
* @param __INSTANCE__ CRS Instance
* @param __REG__ Register to be written
* @param __VALUE__ Value to be written in the register
* @retval None
*/
#define LL_CRS_WriteReg(__INSTANCE__, __REG__, __VALUE__) WRITE_REG(__INSTANCE__->__REG__, (__VALUE__))
/**
* @brief Read a value in CRS register
* @param __INSTANCE__ CRS Instance
* @param __REG__ Register to be read
* @retval Register value
*/
#define LL_CRS_ReadReg(__INSTANCE__, __REG__) READ_REG(__INSTANCE__->__REG__)
/**
* @}
*/
/** @defgroup CRS_LL_EM_Exported_Macros_Calculate_Reload Exported_Macros_Calculate_Reload
* @{
*/
/**
* @brief Macro to calculate reload value to be set in CRS register according to target and sync frequencies
* @note The RELOAD value should be selected according to the ratio between
* the target frequency and the frequency of the synchronization source after
* prescaling. It is then decreased by one in order to reach the expected
* synchronization on the zero value. The formula is the following:
* RELOAD = (fTARGET / fSYNC) -1
* @param __FTARGET__ Target frequency (value in Hz)
* @param __FSYNC__ Synchronization signal frequency (value in Hz)
* @retval Reload value (in Hz)
*/
#define __LL_CRS_CALC_CALCULATE_RELOADVALUE(__FTARGET__, __FSYNC__) (((__FTARGET__) / (__FSYNC__)) - 1U)
/**
* @}
*/
/**
* @}
*/
/* Exported functions --------------------------------------------------------*/
/** @defgroup CRS_LL_Exported_Functions CRS Exported Functions
* @{
*/
/** @defgroup CRS_LL_EF_Configuration Configuration
* @{
*/
/**
* @brief Enable Frequency error counter
* @note When this bit is set, the CRS_CFGR register is write-protected and cannot be modified
* @rmtoll CR CEN LL_CRS_EnableFreqErrorCounter
* @retval None
*/
__STATIC_INLINE void LL_CRS_EnableFreqErrorCounter(void)
{
SET_BIT(CRS->CR, CRS_CR_CEN);
}
/**
* @brief Disable Frequency error counter
* @rmtoll CR CEN LL_CRS_DisableFreqErrorCounter
* @retval None
*/
__STATIC_INLINE void LL_CRS_DisableFreqErrorCounter(void)
{
CLEAR_BIT(CRS->CR, CRS_CR_CEN);
}
/**
* @brief Check if Frequency error counter is enabled or not
* @rmtoll CR CEN LL_CRS_IsEnabledFreqErrorCounter
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_CRS_IsEnabledFreqErrorCounter(void)
{
return (READ_BIT(CRS->CR, CRS_CR_CEN) == (CRS_CR_CEN));
}
/**
* @brief Enable Automatic trimming counter
* @rmtoll CR AUTOTRIMEN LL_CRS_EnableAutoTrimming
* @retval None
*/
__STATIC_INLINE void LL_CRS_EnableAutoTrimming(void)
{
SET_BIT(CRS->CR, CRS_CR_AUTOTRIMEN);
}
/**
* @brief Disable Automatic trimming counter
* @rmtoll CR AUTOTRIMEN LL_CRS_DisableAutoTrimming
* @retval None
*/
__STATIC_INLINE void LL_CRS_DisableAutoTrimming(void)
{
CLEAR_BIT(CRS->CR, CRS_CR_AUTOTRIMEN);
}
/**
* @brief Check if Automatic trimming is enabled or not
* @rmtoll CR AUTOTRIMEN LL_CRS_IsEnabledAutoTrimming
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_CRS_IsEnabledAutoTrimming(void)
{
return (READ_BIT(CRS->CR, CRS_CR_AUTOTRIMEN) == (CRS_CR_AUTOTRIMEN));
}
/**
* @brief Set HSI48 oscillator smooth trimming
* @note When the AUTOTRIMEN bit is set, this field is controlled by hardware and is read-only
* @rmtoll CR TRIM LL_CRS_SetHSI48SmoothTrimming
* @param Value a number between Min_Data = 0 and Max_Data = 127 for STM32L412xx/L422xx or 63 otherwise
* @note Default value can be set thanks to @ref LL_CRS_HSI48CALIBRATION_DEFAULT
* @retval None
*/
__STATIC_INLINE void LL_CRS_SetHSI48SmoothTrimming(uint32_t Value)
{
MODIFY_REG(CRS->CR, CRS_CR_TRIM, Value << CRS_CR_TRIM_Pos);
}
/**
* @brief Get HSI48 oscillator smooth trimming
* @rmtoll CR TRIM LL_CRS_GetHSI48SmoothTrimming
* @retval a number between Min_Data = 0 and Max_Data = 127 for STM32L412xx/L422xx or 63 otherwise
*/
__STATIC_INLINE uint32_t LL_CRS_GetHSI48SmoothTrimming(void)
{
return (uint32_t)(READ_BIT(CRS->CR, CRS_CR_TRIM) >> CRS_CR_TRIM_Pos);
}
/**
* @brief Set counter reload value
* @rmtoll CFGR RELOAD LL_CRS_SetReloadCounter
* @param Value a number between Min_Data = 0 and Max_Data = 0xFFFF
* @note Default value can be set thanks to @ref LL_CRS_RELOADVALUE_DEFAULT
* Otherwise it can be calculated in using macro @ref __LL_CRS_CALC_CALCULATE_RELOADVALUE (_FTARGET_, _FSYNC_)
* @retval None
*/
__STATIC_INLINE void LL_CRS_SetReloadCounter(uint32_t Value)
{
MODIFY_REG(CRS->CFGR, CRS_CFGR_RELOAD, Value);
}
/**
* @brief Get counter reload value
* @rmtoll CFGR RELOAD LL_CRS_GetReloadCounter
* @retval a number between Min_Data = 0 and Max_Data = 0xFFFF
*/
__STATIC_INLINE uint32_t LL_CRS_GetReloadCounter(void)
{
return (uint32_t)(READ_BIT(CRS->CFGR, CRS_CFGR_RELOAD));
}
/**
* @brief Set frequency error limit
* @rmtoll CFGR FELIM LL_CRS_SetFreqErrorLimit
* @param Value a number between Min_Data = 0 and Max_Data = 255
* @note Default value can be set thanks to @ref LL_CRS_ERRORLIMIT_DEFAULT
* @retval None
*/
__STATIC_INLINE void LL_CRS_SetFreqErrorLimit(uint32_t Value)
{
MODIFY_REG(CRS->CFGR, CRS_CFGR_FELIM, Value << CRS_CFGR_FELIM_Pos);
}
/**
* @brief Get frequency error limit
* @rmtoll CFGR FELIM LL_CRS_GetFreqErrorLimit
* @retval A number between Min_Data = 0 and Max_Data = 255
*/
__STATIC_INLINE uint32_t LL_CRS_GetFreqErrorLimit(void)
{
return (uint32_t)(READ_BIT(CRS->CFGR, CRS_CFGR_FELIM) >> CRS_CFGR_FELIM_Pos);
}
/**
* @brief Set division factor for SYNC signal
* @rmtoll CFGR SYNCDIV LL_CRS_SetSyncDivider
* @param Divider This parameter can be one of the following values:
* @arg @ref LL_CRS_SYNC_DIV_1
* @arg @ref LL_CRS_SYNC_DIV_2
* @arg @ref LL_CRS_SYNC_DIV_4
* @arg @ref LL_CRS_SYNC_DIV_8
* @arg @ref LL_CRS_SYNC_DIV_16
* @arg @ref LL_CRS_SYNC_DIV_32
* @arg @ref LL_CRS_SYNC_DIV_64
* @arg @ref LL_CRS_SYNC_DIV_128
* @retval None
*/
__STATIC_INLINE void LL_CRS_SetSyncDivider(uint32_t Divider)
{
MODIFY_REG(CRS->CFGR, CRS_CFGR_SYNCDIV, Divider);
}
/**
* @brief Get division factor for SYNC signal
* @rmtoll CFGR SYNCDIV LL_CRS_GetSyncDivider
* @retval Returned value can be one of the following values:
* @arg @ref LL_CRS_SYNC_DIV_1
* @arg @ref LL_CRS_SYNC_DIV_2
* @arg @ref LL_CRS_SYNC_DIV_4
* @arg @ref LL_CRS_SYNC_DIV_8
* @arg @ref LL_CRS_SYNC_DIV_16
* @arg @ref LL_CRS_SYNC_DIV_32
* @arg @ref LL_CRS_SYNC_DIV_64
* @arg @ref LL_CRS_SYNC_DIV_128
*/
__STATIC_INLINE uint32_t LL_CRS_GetSyncDivider(void)
{
return (uint32_t)(READ_BIT(CRS->CFGR, CRS_CFGR_SYNCDIV));
}
/**
* @brief Set SYNC signal source
* @rmtoll CFGR SYNCSRC LL_CRS_SetSyncSignalSource
* @param Source This parameter can be one of the following values:
* @arg @ref LL_CRS_SYNC_SOURCE_GPIO
* @arg @ref LL_CRS_SYNC_SOURCE_LSE
* @arg @ref LL_CRS_SYNC_SOURCE_USB
* @retval None
*/
__STATIC_INLINE void LL_CRS_SetSyncSignalSource(uint32_t Source)
{
MODIFY_REG(CRS->CFGR, CRS_CFGR_SYNCSRC, Source);
}
/**
* @brief Get SYNC signal source
* @rmtoll CFGR SYNCSRC LL_CRS_GetSyncSignalSource
* @retval Returned value can be one of the following values:
* @arg @ref LL_CRS_SYNC_SOURCE_GPIO
* @arg @ref LL_CRS_SYNC_SOURCE_LSE
* @arg @ref LL_CRS_SYNC_SOURCE_USB
*/
__STATIC_INLINE uint32_t LL_CRS_GetSyncSignalSource(void)
{
return (uint32_t)(READ_BIT(CRS->CFGR, CRS_CFGR_SYNCSRC));
}
/**
* @brief Set input polarity for the SYNC signal source
* @rmtoll CFGR SYNCPOL LL_CRS_SetSyncPolarity
* @param Polarity This parameter can be one of the following values:
* @arg @ref LL_CRS_SYNC_POLARITY_RISING
* @arg @ref LL_CRS_SYNC_POLARITY_FALLING
* @retval None
*/
__STATIC_INLINE void LL_CRS_SetSyncPolarity(uint32_t Polarity)
{
MODIFY_REG(CRS->CFGR, CRS_CFGR_SYNCPOL, Polarity);
}
/**
* @brief Get input polarity for the SYNC signal source
* @rmtoll CFGR SYNCPOL LL_CRS_GetSyncPolarity
* @retval Returned value can be one of the following values:
* @arg @ref LL_CRS_SYNC_POLARITY_RISING
* @arg @ref LL_CRS_SYNC_POLARITY_FALLING
*/
__STATIC_INLINE uint32_t LL_CRS_GetSyncPolarity(void)
{
return (uint32_t)(READ_BIT(CRS->CFGR, CRS_CFGR_SYNCPOL));
}
/**
* @brief Configure CRS for the synchronization
* @rmtoll CR TRIM LL_CRS_ConfigSynchronization\n
* CFGR RELOAD LL_CRS_ConfigSynchronization\n
* CFGR FELIM LL_CRS_ConfigSynchronization\n
* CFGR SYNCDIV LL_CRS_ConfigSynchronization\n
* CFGR SYNCSRC LL_CRS_ConfigSynchronization\n
* CFGR SYNCPOL LL_CRS_ConfigSynchronization
* @param HSI48CalibrationValue a number between Min_Data = 0 and Max_Data = 127 for STM32L412xx/L422xx or 63 otherwise
* @param ErrorLimitValue a number between Min_Data = 0 and Max_Data = 0xFFFF
* @param ReloadValue a number between Min_Data = 0 and Max_Data = 255
* @param Settings This parameter can be a combination of the following values:
* @arg @ref LL_CRS_SYNC_DIV_1 or @ref LL_CRS_SYNC_DIV_2 or @ref LL_CRS_SYNC_DIV_4 or @ref LL_CRS_SYNC_DIV_8
* or @ref LL_CRS_SYNC_DIV_16 or @ref LL_CRS_SYNC_DIV_32 or @ref LL_CRS_SYNC_DIV_64 or @ref LL_CRS_SYNC_DIV_128
* @arg @ref LL_CRS_SYNC_SOURCE_GPIO or @ref LL_CRS_SYNC_SOURCE_LSE or @ref LL_CRS_SYNC_SOURCE_USB
* @arg @ref LL_CRS_SYNC_POLARITY_RISING or @ref LL_CRS_SYNC_POLARITY_FALLING
* @retval None
*/
__STATIC_INLINE void LL_CRS_ConfigSynchronization(uint32_t HSI48CalibrationValue, uint32_t ErrorLimitValue, uint32_t ReloadValue, uint32_t Settings)
{
MODIFY_REG(CRS->CR, CRS_CR_TRIM, HSI48CalibrationValue);
MODIFY_REG(CRS->CFGR,
CRS_CFGR_RELOAD | CRS_CFGR_FELIM | CRS_CFGR_SYNCDIV | CRS_CFGR_SYNCSRC | CRS_CFGR_SYNCPOL,
ReloadValue | (ErrorLimitValue << CRS_CFGR_FELIM_Pos) | Settings);
}
/**
* @}
*/
/** @defgroup CRS_LL_EF_CRS_Management CRS_Management
* @{
*/
/**
* @brief Generate software SYNC event
* @rmtoll CR SWSYNC LL_CRS_GenerateEvent_SWSYNC
* @retval None
*/
__STATIC_INLINE void LL_CRS_GenerateEvent_SWSYNC(void)
{
SET_BIT(CRS->CR, CRS_CR_SWSYNC);
}
/**
* @brief Get the frequency error direction latched in the time of the last
* SYNC event
* @rmtoll ISR FEDIR LL_CRS_GetFreqErrorDirection
* @retval Returned value can be one of the following values:
* @arg @ref LL_CRS_FREQ_ERROR_DIR_UP
* @arg @ref LL_CRS_FREQ_ERROR_DIR_DOWN
*/
__STATIC_INLINE uint32_t LL_CRS_GetFreqErrorDirection(void)
{
return (uint32_t)(READ_BIT(CRS->ISR, CRS_ISR_FEDIR));
}
/**
* @brief Get the frequency error counter value latched in the time of the last SYNC event
* @rmtoll ISR FECAP LL_CRS_GetFreqErrorCapture
* @retval A number between Min_Data = 0x0000 and Max_Data = 0xFFFF
*/
__STATIC_INLINE uint32_t LL_CRS_GetFreqErrorCapture(void)
{
return (uint32_t)(READ_BIT(CRS->ISR, CRS_ISR_FECAP) >> CRS_ISR_FECAP_Pos);
}
/**
* @}
*/
/** @defgroup CRS_LL_EF_FLAG_Management FLAG_Management
* @{
*/
/**
* @brief Check if SYNC event OK signal occurred or not
* @rmtoll ISR SYNCOKF LL_CRS_IsActiveFlag_SYNCOK
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_CRS_IsActiveFlag_SYNCOK(void)
{
return (READ_BIT(CRS->ISR, CRS_ISR_SYNCOKF) == (CRS_ISR_SYNCOKF));
}
/**
* @brief Check if SYNC warning signal occurred or not
* @rmtoll ISR SYNCWARNF LL_CRS_IsActiveFlag_SYNCWARN
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_CRS_IsActiveFlag_SYNCWARN(void)
{
return (READ_BIT(CRS->ISR, CRS_ISR_SYNCWARNF) == (CRS_ISR_SYNCWARNF));
}
/**
* @brief Check if Synchronization or trimming error signal occurred or not
* @rmtoll ISR ERRF LL_CRS_IsActiveFlag_ERR
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_CRS_IsActiveFlag_ERR(void)
{
return (READ_BIT(CRS->ISR, CRS_ISR_ERRF) == (CRS_ISR_ERRF));
}
/**
* @brief Check if Expected SYNC signal occurred or not
* @rmtoll ISR ESYNCF LL_CRS_IsActiveFlag_ESYNC
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_CRS_IsActiveFlag_ESYNC(void)
{
return (READ_BIT(CRS->ISR, CRS_ISR_ESYNCF) == (CRS_ISR_ESYNCF));
}
/**
* @brief Check if SYNC error signal occurred or not
* @rmtoll ISR SYNCERR LL_CRS_IsActiveFlag_SYNCERR
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_CRS_IsActiveFlag_SYNCERR(void)
{
return (READ_BIT(CRS->ISR, CRS_ISR_SYNCERR) == (CRS_ISR_SYNCERR));
}
/**
* @brief Check if SYNC missed error signal occurred or not
* @rmtoll ISR SYNCMISS LL_CRS_IsActiveFlag_SYNCMISS
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_CRS_IsActiveFlag_SYNCMISS(void)
{
return (READ_BIT(CRS->ISR, CRS_ISR_SYNCMISS) == (CRS_ISR_SYNCMISS));
}
/**
* @brief Check if Trimming overflow or underflow occurred or not
* @rmtoll ISR TRIMOVF LL_CRS_IsActiveFlag_TRIMOVF
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_CRS_IsActiveFlag_TRIMOVF(void)
{
return (READ_BIT(CRS->ISR, CRS_ISR_TRIMOVF) == (CRS_ISR_TRIMOVF));
}
/**
* @brief Clear the SYNC event OK flag
* @rmtoll ICR SYNCOKC LL_CRS_ClearFlag_SYNCOK
* @retval None
*/
__STATIC_INLINE void LL_CRS_ClearFlag_SYNCOK(void)
{
WRITE_REG(CRS->ICR, CRS_ICR_SYNCOKC);
}
/**
* @brief Clear the SYNC warning flag
* @rmtoll ICR SYNCWARNC LL_CRS_ClearFlag_SYNCWARN
* @retval None
*/
__STATIC_INLINE void LL_CRS_ClearFlag_SYNCWARN(void)
{
WRITE_REG(CRS->ICR, CRS_ICR_SYNCWARNC);
}
/**
* @brief Clear TRIMOVF, SYNCMISS and SYNCERR bits and consequently also
* the ERR flag
* @rmtoll ICR ERRC LL_CRS_ClearFlag_ERR
* @retval None
*/
__STATIC_INLINE void LL_CRS_ClearFlag_ERR(void)
{
WRITE_REG(CRS->ICR, CRS_ICR_ERRC);
}
/**
* @brief Clear Expected SYNC flag
* @rmtoll ICR ESYNCC LL_CRS_ClearFlag_ESYNC
* @retval None
*/
__STATIC_INLINE void LL_CRS_ClearFlag_ESYNC(void)
{
WRITE_REG(CRS->ICR, CRS_ICR_ESYNCC);
}
/**
* @}
*/
/** @defgroup CRS_LL_EF_IT_Management IT_Management
* @{
*/
/**
* @brief Enable SYNC event OK interrupt
* @rmtoll CR SYNCOKIE LL_CRS_EnableIT_SYNCOK
* @retval None
*/
__STATIC_INLINE void LL_CRS_EnableIT_SYNCOK(void)
{
SET_BIT(CRS->CR, CRS_CR_SYNCOKIE);
}
/**
* @brief Disable SYNC event OK interrupt
* @rmtoll CR SYNCOKIE LL_CRS_DisableIT_SYNCOK
* @retval None
*/
__STATIC_INLINE void LL_CRS_DisableIT_SYNCOK(void)
{
CLEAR_BIT(CRS->CR, CRS_CR_SYNCOKIE);
}
/**
* @brief Check if SYNC event OK interrupt is enabled or not
* @rmtoll CR SYNCOKIE LL_CRS_IsEnabledIT_SYNCOK
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_CRS_IsEnabledIT_SYNCOK(void)
{
return (READ_BIT(CRS->CR, CRS_CR_SYNCOKIE) == (CRS_CR_SYNCOKIE));
}
/**
* @brief Enable SYNC warning interrupt
* @rmtoll CR SYNCWARNIE LL_CRS_EnableIT_SYNCWARN
* @retval None
*/
__STATIC_INLINE void LL_CRS_EnableIT_SYNCWARN(void)
{
SET_BIT(CRS->CR, CRS_CR_SYNCWARNIE);
}
/**
* @brief Disable SYNC warning interrupt
* @rmtoll CR SYNCWARNIE LL_CRS_DisableIT_SYNCWARN
* @retval None
*/
__STATIC_INLINE void LL_CRS_DisableIT_SYNCWARN(void)
{
CLEAR_BIT(CRS->CR, CRS_CR_SYNCWARNIE);
}
/**
* @brief Check if SYNC warning interrupt is enabled or not
* @rmtoll CR SYNCWARNIE LL_CRS_IsEnabledIT_SYNCWARN
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_CRS_IsEnabledIT_SYNCWARN(void)
{
return (READ_BIT(CRS->CR, CRS_CR_SYNCWARNIE) == (CRS_CR_SYNCWARNIE));
}
/**
* @brief Enable Synchronization or trimming error interrupt
* @rmtoll CR ERRIE LL_CRS_EnableIT_ERR
* @retval None
*/
__STATIC_INLINE void LL_CRS_EnableIT_ERR(void)
{
SET_BIT(CRS->CR, CRS_CR_ERRIE);
}
/**
* @brief Disable Synchronization or trimming error interrupt
* @rmtoll CR ERRIE LL_CRS_DisableIT_ERR
* @retval None
*/
__STATIC_INLINE void LL_CRS_DisableIT_ERR(void)
{
CLEAR_BIT(CRS->CR, CRS_CR_ERRIE);
}
/**
* @brief Check if Synchronization or trimming error interrupt is enabled or not
* @rmtoll CR ERRIE LL_CRS_IsEnabledIT_ERR
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_CRS_IsEnabledIT_ERR(void)
{
return (READ_BIT(CRS->CR, CRS_CR_ERRIE) == (CRS_CR_ERRIE));
}
/**
* @brief Enable Expected SYNC interrupt
* @rmtoll CR ESYNCIE LL_CRS_EnableIT_ESYNC
* @retval None
*/
__STATIC_INLINE void LL_CRS_EnableIT_ESYNC(void)
{
SET_BIT(CRS->CR, CRS_CR_ESYNCIE);
}
/**
* @brief Disable Expected SYNC interrupt
* @rmtoll CR ESYNCIE LL_CRS_DisableIT_ESYNC
* @retval None
*/
__STATIC_INLINE void LL_CRS_DisableIT_ESYNC(void)
{
CLEAR_BIT(CRS->CR, CRS_CR_ESYNCIE);
}
/**
* @brief Check if Expected SYNC interrupt is enabled or not
* @rmtoll CR ESYNCIE LL_CRS_IsEnabledIT_ESYNC
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_CRS_IsEnabledIT_ESYNC(void)
{
return (READ_BIT(CRS->CR, CRS_CR_ESYNCIE) == (CRS_CR_ESYNCIE));
}
/**
* @}
*/
#if defined(USE_FULL_LL_DRIVER)
/** @defgroup CRS_LL_EF_Init Initialization and de-initialization functions
* @{
*/
ErrorStatus LL_CRS_DeInit(void);
/**
* @}
*/
#endif /* USE_FULL_LL_DRIVER */
/**
* @}
*/
/**
* @}
*/
#endif /* defined(CRS) */
/**
* @}
*/
#ifdef __cplusplus
}
#endif
#endif /* STM32L4xx_LL_CRS_H */

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,329 @@
/**
******************************************************************************
* @file stm32l4xx_ll_utils.h
* @author MCD Application Team
* @brief Header file of UTILS LL module.
*
******************************************************************************
* @attention
*
* Copyright (c) 2017 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
@verbatim
==============================================================================
##### How to use this driver #####
==============================================================================
[..]
The LL UTILS driver contains a set of generic APIs that can be
used by user:
(+) Device electronic signature
(+) Timing functions
(+) PLL configuration functions
@endverbatim
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef STM32L4xx_LL_UTILS_H
#define STM32L4xx_LL_UTILS_H
#ifdef __cplusplus
extern "C" {
#endif
/* Includes ------------------------------------------------------------------*/
#include "stm32l4xx.h"
/** @addtogroup STM32L4xx_LL_Driver
* @{
*/
/** @defgroup UTILS_LL UTILS
* @{
*/
/* Private types -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private constants ---------------------------------------------------------*/
/** @defgroup UTILS_LL_Private_Constants UTILS Private Constants
* @{
*/
/* Max delay can be used in LL_mDelay */
#define LL_MAX_DELAY 0xFFFFFFFFU
/**
* @brief Unique device ID register base address
*/
#define UID_BASE_ADDRESS UID_BASE
/**
* @brief Flash size data register base address
*/
#define FLASHSIZE_BASE_ADDRESS FLASHSIZE_BASE
/**
* @brief Package data register base address
*/
#define PACKAGE_BASE_ADDRESS PACKAGE_BASE
/**
* @}
*/
/* Private macros ------------------------------------------------------------*/
/** @defgroup UTILS_LL_Private_Macros UTILS Private Macros
* @{
*/
/**
* @}
*/
/* Exported types ------------------------------------------------------------*/
/** @defgroup UTILS_LL_ES_INIT UTILS Exported structures
* @{
*/
/**
* @brief UTILS PLL structure definition
*/
typedef struct
{
uint32_t PLLM; /*!< Division factor for PLL VCO input clock.
This parameter can be a value of @ref RCC_LL_EC_PLLM_DIV
This feature can be modified afterwards using unitary function
@ref LL_RCC_PLL_ConfigDomain_SYS(). */
uint32_t PLLN; /*!< Multiplication factor for PLL VCO output clock.
This parameter must be a number between Min_Data = 8 and Max_Data = 86
This feature can be modified afterwards using unitary function
@ref LL_RCC_PLL_ConfigDomain_SYS(). */
uint32_t PLLR; /*!< Division for the main system clock.
This parameter can be a value of @ref RCC_LL_EC_PLLR_DIV
This feature can be modified afterwards using unitary function
@ref LL_RCC_PLL_ConfigDomain_SYS(). */
} LL_UTILS_PLLInitTypeDef;
/**
* @brief UTILS System, AHB and APB buses clock configuration structure definition
*/
typedef struct
{
uint32_t AHBCLKDivider; /*!< The AHB clock (HCLK) divider. This clock is derived from the system clock (SYSCLK).
This parameter can be a value of @ref RCC_LL_EC_SYSCLK_DIV
This feature can be modified afterwards using unitary function
@ref LL_RCC_SetAHBPrescaler(). */
uint32_t APB1CLKDivider; /*!< The APB1 clock (PCLK1) divider. This clock is derived from the AHB clock (HCLK).
This parameter can be a value of @ref RCC_LL_EC_APB1_DIV
This feature can be modified afterwards using unitary function
@ref LL_RCC_SetAPB1Prescaler(). */
uint32_t APB2CLKDivider; /*!< The APB2 clock (PCLK2) divider. This clock is derived from the AHB clock (HCLK).
This parameter can be a value of @ref RCC_LL_EC_APB2_DIV
This feature can be modified afterwards using unitary function
@ref LL_RCC_SetAPB2Prescaler(). */
} LL_UTILS_ClkInitTypeDef;
/**
* @}
*/
/* Exported constants --------------------------------------------------------*/
/** @defgroup UTILS_LL_Exported_Constants UTILS Exported Constants
* @{
*/
/** @defgroup UTILS_EC_HSE_BYPASS HSE Bypass activation
* @{
*/
#define LL_UTILS_HSEBYPASS_OFF 0x00000000U /*!< HSE Bypass is not enabled */
#define LL_UTILS_HSEBYPASS_ON 0x00000001U /*!< HSE Bypass is enabled */
/**
* @}
*/
/** @defgroup UTILS_EC_PACKAGETYPE PACKAGE TYPE
* @{
*/
#define LL_UTILS_PACKAGETYPE_LQFP64 0x00000000U /*!< LQFP64 package type */
#define LL_UTILS_PACKAGETYPE_WLCSP64 0x00000001U /*!< WLCSP64 package type */
#define LL_UTILS_PACKAGETYPE_LQFP100 0x00000002U /*!< LQFP100 package type */
#define LL_UTILS_PACKAGETYPE_BGA132 0x00000003U /*!< BGA132 package type */
#define LL_UTILS_PACKAGETYPE_LQFP144_CSP72 0x00000004U /*!< LQFP144, WLCSP81 or WLCSP72 package type */
#define LL_UTILS_PACKAGETYPE_UFQFPN32 0x00000008U /*!< UFQFPN32 package type */
#define LL_UTILS_PACKAGETYPE_UFQFPN48 0x0000000AU /*!< UFQFPN48 package type */
#define LL_UTILS_PACKAGETYPE_LQFP48 0x0000000BU /*!< LQFP48 package type */
#define LL_UTILS_PACKAGETYPE_WLCSP49 0x0000000CU /*!< WLCSP49 package type */
#define LL_UTILS_PACKAGETYPE_UFBGA64 0x0000000DU /*!< UFBGA64 package type */
#define LL_UTILS_PACKAGETYPE_UFBGA100 0x0000000EU /*!< UFBGA100 package type */
#define LL_UTILS_PACKAGETYPE_UFBGA169_CSP115 0x00000010U /*!< UFBGA169 or WLCSP115 package type */
#define LL_UTILS_PACKAGETYPE_LQFP100_DSI 0x00000012U /*!< LQFP100 with DSI package type */
#define LL_UTILS_PACKAGETYPE_WLCSP144_DSI 0x00000013U /*!< WLCSP144 with DSI package type */
#define LL_UTILS_PACKAGETYPE_UFBGA144_DSI 0x00000013U /*!< UFBGA144 with DSI package type */
#define LL_UTILS_PACKAGETYPE_UFBGA169_DSI 0x00000014U /*!< UFBGA169 with DSI package type */
#define LL_UTILS_PACKAGETYPE_LQFP144_DSI 0x00000015U /*!< LQFP144 with DSI package type */
/**
* @}
*/
/**
* @}
*/
/* Exported macro ------------------------------------------------------------*/
/* Exported functions --------------------------------------------------------*/
/** @defgroup UTILS_LL_Exported_Functions UTILS Exported Functions
* @{
*/
/** @defgroup UTILS_EF_DEVICE_ELECTRONIC_SIGNATURE DEVICE ELECTRONIC SIGNATURE
* @{
*/
/**
* @brief Get Word0 of the unique device identifier (UID based on 96 bits)
* @retval UID[31:0]: X and Y coordinates on the wafer expressed in BCD format
*/
__STATIC_INLINE uint32_t LL_GetUID_Word0(void)
{
return (uint32_t)(READ_REG(*((uint32_t *)UID_BASE_ADDRESS)));
}
/**
* @brief Get Word1 of the unique device identifier (UID based on 96 bits)
* @retval UID[63:32]: Wafer number (UID[39:32]) & LOT_NUM[23:0] (UID[63:40])
*/
__STATIC_INLINE uint32_t LL_GetUID_Word1(void)
{
return (uint32_t)(READ_REG(*((uint32_t *)(UID_BASE_ADDRESS + 4U))));
}
/**
* @brief Get Word2 of the unique device identifier (UID based on 96 bits)
* @retval UID[95:64]: Lot number (ASCII encoded) - LOT_NUM[55:24]
*/
__STATIC_INLINE uint32_t LL_GetUID_Word2(void)
{
return (uint32_t)(READ_REG(*((uint32_t *)(UID_BASE_ADDRESS + 8U))));
}
/**
* @brief Get Flash memory size
* @note This bitfield indicates the size of the device Flash memory expressed in
* Kbytes. As an example, 0x040 corresponds to 64 Kbytes.
* @retval FLASH_SIZE[15:0]: Flash memory size
*/
__STATIC_INLINE uint32_t LL_GetFlashSize(void)
{
return (uint32_t)(READ_REG(*((uint32_t *)FLASHSIZE_BASE_ADDRESS)) & 0xFFFFU);
}
/**
* @brief Get Package type
* @retval Returned value can be one of the following values:
* @arg @ref LL_UTILS_PACKAGETYPE_LQFP64 (*)
* @arg @ref LL_UTILS_PACKAGETYPE_LQFP100 (*)
* @arg @ref LL_UTILS_PACKAGETYPE_BGA132 (*)
* @arg @ref LL_UTILS_PACKAGETYPE_LQFP144_CSP72 (*)
* @arg @ref LL_UTILS_PACKAGETYPE_UFQFPN32 (*)
* @arg @ref LL_UTILS_PACKAGETYPE_UFQFPN48 (*)
* @arg @ref LL_UTILS_PACKAGETYPE_LQFP48 (*)
* @arg @ref LL_UTILS_PACKAGETYPE_WLCSP49 (*)
* @arg @ref LL_UTILS_PACKAGETYPE_UFBGA64 (*)
* @arg @ref LL_UTILS_PACKAGETYPE_UFBGA100 (*)
* @arg @ref LL_UTILS_PACKAGETYPE_UFBGA169 (*)
* @arg @ref LL_UTILS_PACKAGETYPE_LQFP100_DSI (*)
* @arg @ref LL_UTILS_PACKAGETYPE_WLCSP144_DSI (*)
* @arg @ref LL_UTILS_PACKAGETYPE_UFBGA144_DSI (*)
* @arg @ref LL_UTILS_PACKAGETYPE_UFBGA169_DSI (*)
* @arg @ref LL_UTILS_PACKAGETYPE_LQFP144_DSI (*)
*
* (*) value not defined in all devices.
*/
__STATIC_INLINE uint32_t LL_GetPackageType(void)
{
return (uint32_t)(READ_REG(*((uint32_t *)PACKAGE_BASE_ADDRESS)) & 0x1FU);
}
/**
* @}
*/
/** @defgroup UTILS_LL_EF_DELAY DELAY
* @{
*/
/**
* @brief This function configures the Cortex-M SysTick source of the time base.
* @param HCLKFrequency HCLK frequency in Hz (can be calculated thanks to RCC helper macro)
* @note When a RTOS is used, it is recommended to avoid changing the SysTick
* configuration by calling this function, for a delay use rather osDelay RTOS service.
* @param Ticks Number of ticks
* @retval None
*/
__STATIC_INLINE void LL_InitTick(uint32_t HCLKFrequency, uint32_t Ticks)
{
/* Configure the SysTick to have interrupt in 1ms time base */
SysTick->LOAD = (uint32_t)((HCLKFrequency / Ticks) - 1UL); /* set reload register */
SysTick->VAL = 0UL; /* Load the SysTick Counter Value */
SysTick->CTRL = SysTick_CTRL_CLKSOURCE_Msk |
SysTick_CTRL_ENABLE_Msk; /* Enable the Systick Timer */
}
void LL_Init1msTick(uint32_t HCLKFrequency);
void LL_mDelay(uint32_t Delay);
/**
* @}
*/
/** @defgroup UTILS_EF_SYSTEM SYSTEM
* @{
*/
void LL_SetSystemCoreClock(uint32_t HCLKFrequency);
ErrorStatus LL_SetFlashLatency(uint32_t HCLKFrequency);
ErrorStatus LL_PLL_ConfigSystemClock_MSI(LL_UTILS_PLLInitTypeDef *UTILS_PLLInitStruct,
LL_UTILS_ClkInitTypeDef *UTILS_ClkInitStruct);
ErrorStatus LL_PLL_ConfigSystemClock_HSI(LL_UTILS_PLLInitTypeDef *UTILS_PLLInitStruct,
LL_UTILS_ClkInitTypeDef *UTILS_ClkInitStruct);
ErrorStatus LL_PLL_ConfigSystemClock_HSE(uint32_t HSEFrequency, uint32_t HSEBypass,
LL_UTILS_PLLInitTypeDef *UTILS_PLLInitStruct, LL_UTILS_ClkInitTypeDef *UTILS_ClkInitStruct);
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
#ifdef __cplusplus
}
#endif
#endif /* STM32L4xx_LL_UTILS_H */