f0x.at1/Core/Src/main.c
2022-05-24 08:01:52 +02:00

965 lines
29 KiB
C

/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file : main.c
* @brief : Main program body
******************************************************************************
* @attention
*
* Copyright (c) 2022 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "cmsis_os.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include <stdio.h>
#include "at1_defines.h"
#include "stm32_si5351.h"
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
/* USER CODE END PTD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
I2C_HandleTypeDef hi2c1;
UART_HandleTypeDef hlpuart1;
RTC_HandleTypeDef hrtc;
PCD_HandleTypeDef hpcd_USB_OTG_FS;
/* Definitions for defaultTask */
osThreadId_t defaultTaskHandle;
const osThreadAttr_t defaultTask_attributes = {
.name = "defaultTask",
.stack_size = 128 * 4,
.priority = (osPriority_t) osPriorityNormal,
};
/* Definitions for terminalTask */
osThreadId_t terminalTaskHandle;
const osThreadAttr_t terminalTask_attributes = {
.name = "terminalTask",
.stack_size = 128 * 4,
.priority = (osPriority_t) osPriorityBelowNormal,
};
/* Definitions for morseTask */
osThreadId_t morseTaskHandle;
const osThreadAttr_t morseTask_attributes = {
.name = "morseTask",
.stack_size = 128 * 4,
.priority = (osPriority_t) osPriorityNormal,
};
/* Definitions for clk2Task */
osThreadId_t clk2TaskHandle;
const osThreadAttr_t clk2Task_attributes = {
.name = "clk2Task",
.stack_size = 128 * 4,
.priority = (osPriority_t) osPriorityHigh,
};
/* Definitions for morseQueue */
osMessageQueueId_t morseQueueHandle;
const osMessageQueueAttr_t morseQueue_attributes = {
.name = "morseQueue"
};
/* Definitions for data_access */
osSemaphoreId_t data_accessHandle;
const osSemaphoreAttr_t data_access_attributes = {
.name = "data_access"
};
/* USER CODE BEGIN PV */
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_LPUART1_UART_Init(void);
static void MX_USB_OTG_FS_PCD_Init(void);
static void MX_I2C1_Init(void);
static void MX_RTC_Init(void);
void StartDefaultTask(void *argument);
void start_terminal_task(void *argument);
void start_morse_task(void *argument);
void start_clk2_task(void *argument);
/* USER CODE BEGIN PFP */
// redirect the output of the printf function to the USART print function
// is calling fputc to transmit the output via the USART.
#define PUTCHAR_PROTOTYPE int __io_putchar(int ch)
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
/* USER CODE END 0 */
/**
* @brief The application entry point.
* @retval int
*/
int main(void)
{
/* USER CODE BEGIN 1 */
int status = 0;
/* USER CODE END 1 */
/* MCU Configuration--------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* USER CODE BEGIN Init */
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_LPUART1_UART_Init();
MX_USB_OTG_FS_PCD_Init();
MX_I2C1_Init();
MX_RTC_Init();
/* USER CODE BEGIN 2 */
si5351_inst_t instance_si5351[3] = {0};
si5351_inst_t si5351_inst;
// 1st SI5351 chip and with an A0 = 0:
/*instance_si5351[0] = si5351_init(&hi2c1, 27000000, 0x61, 0);*/
// 2nd SI5351 chip on the same I2C bus "hi2c1" but address line A0 = 1
instance_si5351[1] = si5351_init(&hi2c1, 25000000, 0x60, 3 * sizeof(uint32_t));
// 3rd SI5351 chip on another IC2 bus with handle "hi2c2" *\/
instance_si5351[2] = si5351_init(&hi2c1, 25000000, 0x60, 0);
si5351_inst = instance_si5351[1];
for (int i=0; i<3 ;i++) {
int ready;
ready = si5351_isready(instance_si5351[i]);
printf("Device No. %d (Instance No: 0x%x) is %s\n", i, (unsigned int) instance_si5351[i], (ready==0) ? "ready" : "N/A");
}
puts("Registers of Device No. 1");
char buf[33];
for (uint8_t i=0; i <= SI5351_FANOUT_ENABLE; i++) {
puts(si5351_read_register_debug(instance_si5351[1], buf, sizeof(buf), i));
}
// status = si5351_program(instance_si5351[1]);
printf("Device #1 gets status %d\n", status);
printf("Debug:\n%s", si5351_read_debug_msg(instance_si5351[1]));
//si5351_set_clk0(instance_si5351[1], 3579545);
// si5351_set_clk0(instance_si5351[1], 3580000);
// si5351_set_clk0(instance_si5351[1], 4000000);
si5351_set_clk0(instance_si5351[1], 3510000);
si5351_enable_output(instance_si5351[1],0);
HAL_Delay(1000);
si5351_set_clk0(instance_si5351[1], 6055000);
si5351_enable_output(instance_si5351[1],0);
HAL_Delay(1000);
si5351_set_clk0(instance_si5351[1], 99900000);
si5351_enable_output(instance_si5351[1],0);
HAL_Delay(5000);
si5351_set_clk0(instance_si5351[1], 144500000);
si5351_enable_output(instance_si5351[1],0);
HAL_Delay(10000);
/* World Youth ARDF Championship Romania 2022 */
/* 80 m . RF power 3 W, QRG MOE-MO5: 3550 MHz, MO: 3600 MHz, Antenna 8m
* 80 m Sprint pwr 1 W, TX 1-5: MOE-MO5: 3530 MHz, S: 3550 MHz, TX 1F-5F MOE-MO5: 3570 MHz
* MO: 3600 MHz, Antenna: 8m
* 2 m RF power 1 W, MOE-MO5: 144.500, MO: 144.900 MHz, crossed dipole
*/
si5351_set_clk0(si5351_inst, 3550000);
si5351_set_clk(si5351_inst, 3570000, 2, SI5351_PLLB);
si5351_enable_output(NULL,2);
/*
for (int i=2; i>=0; i--) {
si5351_deinit(instance_si5351[i]);
}
*/
/* USER CODE END 2 */
/* Init scheduler */
osKernelInitialize();
/* USER CODE BEGIN RTOS_MUTEX */
/* add mutexes, ... */
/* USER CODE END RTOS_MUTEX */
/* Create the semaphores(s) */
/* creation of data_access */
data_accessHandle = osSemaphoreNew(1, 1, &data_access_attributes);
/* USER CODE BEGIN RTOS_SEMAPHORES */
/* add semaphores, ... */
/* USER CODE END RTOS_SEMAPHORES */
/* USER CODE BEGIN RTOS_TIMERS */
/* start timers, add new ones, ... */
/* USER CODE END RTOS_TIMERS */
/* Create the queue(s) */
/* creation of morseQueue */
morseQueueHandle = osMessageQueueNew (16, sizeof(uint16_t), &morseQueue_attributes);
/* USER CODE BEGIN RTOS_QUEUES */
/* add queues, ... */
/* USER CODE END RTOS_QUEUES */
/* Create the thread(s) */
/* creation of defaultTask */
defaultTaskHandle = osThreadNew(StartDefaultTask, NULL, &defaultTask_attributes);
/* creation of terminalTask */
terminalTaskHandle = osThreadNew(start_terminal_task, NULL, &terminalTask_attributes);
/* creation of morseTask */
morseTaskHandle = osThreadNew(start_morse_task, (void*) si5351_inst, &morseTask_attributes);
/* creation of clk2Task */
clk2TaskHandle = osThreadNew(start_clk2_task, (void*) si5351_inst, &clk2Task_attributes);
/* USER CODE BEGIN RTOS_THREADS */
/* add threads, ... */
/* USER CODE END RTOS_THREADS */
/* USER CODE BEGIN RTOS_EVENTS */
/* add events, ... */
/* USER CODE END RTOS_EVENTS */
/* Start scheduler */
osKernelStart();
/* We should never get here as control is now taken by the scheduler */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
}
/* USER CODE END 3 */
}
/**
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
/** Configure the main internal regulator output voltage
*/
if (HAL_PWREx_ControlVoltageScaling(PWR_REGULATOR_VOLTAGE_SCALE1) != HAL_OK)
{
Error_Handler();
}
/** Configure LSE Drive Capability
*/
HAL_PWR_EnableBkUpAccess();
__HAL_RCC_LSEDRIVE_CONFIG(RCC_LSEDRIVE_HIGH);
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_LSI|RCC_OSCILLATORTYPE_LSE
|RCC_OSCILLATORTYPE_MSI;
RCC_OscInitStruct.LSEState = RCC_LSE_ON;
RCC_OscInitStruct.LSIState = RCC_LSI_ON;
RCC_OscInitStruct.MSIState = RCC_MSI_ON;
RCC_OscInitStruct.MSICalibrationValue = 0;
RCC_OscInitStruct.MSIClockRange = RCC_MSIRANGE_6;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_MSI;
RCC_OscInitStruct.PLL.PLLM = 1;
RCC_OscInitStruct.PLL.PLLN = 71;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
RCC_OscInitStruct.PLL.PLLQ = RCC_PLLQ_DIV2;
RCC_OscInitStruct.PLL.PLLR = RCC_PLLR_DIV6;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
{
Error_Handler();
}
HAL_RCCEx_EnableLSCO(RCC_LSCOSOURCE_LSI);
/** Enable MSI Auto calibration
*/
HAL_RCCEx_EnableMSIPLLMode();
}
/**
* @brief I2C1 Initialization Function
* @param None
* @retval None
*/
static void MX_I2C1_Init(void)
{
/* USER CODE BEGIN I2C1_Init 0 */
/* USER CODE END I2C1_Init 0 */
/* USER CODE BEGIN I2C1_Init 1 */
/* USER CODE END I2C1_Init 1 */
hi2c1.Instance = I2C1;
hi2c1.Init.Timing = 0x00505B89;
hi2c1.Init.OwnAddress1 = 0;
hi2c1.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT;
hi2c1.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE;
hi2c1.Init.OwnAddress2 = 0;
hi2c1.Init.OwnAddress2Masks = I2C_OA2_NOMASK;
hi2c1.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE;
hi2c1.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE;
if (HAL_I2C_Init(&hi2c1) != HAL_OK)
{
Error_Handler();
}
/** Configure Analogue filter
*/
if (HAL_I2CEx_ConfigAnalogFilter(&hi2c1, I2C_ANALOGFILTER_ENABLE) != HAL_OK)
{
Error_Handler();
}
/** Configure Digital filter
*/
if (HAL_I2CEx_ConfigDigitalFilter(&hi2c1, 0) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN I2C1_Init 2 */
/* USER CODE END I2C1_Init 2 */
}
/**
* @brief LPUART1 Initialization Function
* @param None
* @retval None
*/
static void MX_LPUART1_UART_Init(void)
{
/* USER CODE BEGIN LPUART1_Init 0 */
/* USER CODE END LPUART1_Init 0 */
/* USER CODE BEGIN LPUART1_Init 1 */
/* USER CODE END LPUART1_Init 1 */
hlpuart1.Instance = LPUART1;
hlpuart1.Init.BaudRate = 115200;
hlpuart1.Init.WordLength = UART_WORDLENGTH_8B;
hlpuart1.Init.StopBits = UART_STOPBITS_1;
hlpuart1.Init.Parity = UART_PARITY_NONE;
hlpuart1.Init.Mode = UART_MODE_TX_RX;
hlpuart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;
hlpuart1.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE;
hlpuart1.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT;
if (HAL_UART_Init(&hlpuart1) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN LPUART1_Init 2 */
/* USER CODE END LPUART1_Init 2 */
}
/**
* @brief RTC Initialization Function
* @param None
* @retval None
*/
static void MX_RTC_Init(void)
{
/* USER CODE BEGIN RTC_Init 0 */
/* USER CODE END RTC_Init 0 */
RTC_TimeTypeDef sTime = {0};
RTC_DateTypeDef sDate = {0};
/* USER CODE BEGIN RTC_Init 1 */
/* USER CODE END RTC_Init 1 */
/** Initialize RTC Only
*/
hrtc.Instance = RTC;
hrtc.Init.HourFormat = RTC_HOURFORMAT_24;
hrtc.Init.AsynchPrediv = 127;
hrtc.Init.SynchPrediv = 255;
hrtc.Init.OutPut = RTC_OUTPUT_DISABLE;
hrtc.Init.OutPutRemap = RTC_OUTPUT_REMAP_NONE;
hrtc.Init.OutPutPolarity = RTC_OUTPUT_POLARITY_HIGH;
hrtc.Init.OutPutType = RTC_OUTPUT_TYPE_OPENDRAIN;
if (HAL_RTC_Init(&hrtc) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN Check_RTC_BKUP */
/* USER CODE END Check_RTC_BKUP */
/** Initialize RTC and set the Time and Date
*/
sTime.Hours = 0x12;
sTime.Minutes = 0x30;
sTime.Seconds = 0x0;
sTime.DayLightSaving = RTC_DAYLIGHTSAVING_NONE;
sTime.StoreOperation = RTC_STOREOPERATION_RESET;
if (HAL_RTC_SetTime(&hrtc, &sTime, RTC_FORMAT_BCD) != HAL_OK)
{
Error_Handler();
}
sDate.WeekDay = RTC_WEEKDAY_MONDAY;
sDate.Month = RTC_MONTH_MAY;
sDate.Date = 0x23;
sDate.Year = 0x22;
if (HAL_RTC_SetDate(&hrtc, &sDate, RTC_FORMAT_BCD) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN RTC_Init 2 */
/* USER CODE END RTC_Init 2 */
}
/**
* @brief USB_OTG_FS Initialization Function
* @param None
* @retval None
*/
static void MX_USB_OTG_FS_PCD_Init(void)
{
/* USER CODE BEGIN USB_OTG_FS_Init 0 */
/* USER CODE END USB_OTG_FS_Init 0 */
/* USER CODE BEGIN USB_OTG_FS_Init 1 */
/* USER CODE END USB_OTG_FS_Init 1 */
hpcd_USB_OTG_FS.Instance = USB_OTG_FS;
hpcd_USB_OTG_FS.Init.dev_endpoints = 6;
hpcd_USB_OTG_FS.Init.speed = PCD_SPEED_FULL;
hpcd_USB_OTG_FS.Init.phy_itface = PCD_PHY_EMBEDDED;
hpcd_USB_OTG_FS.Init.Sof_enable = ENABLE;
hpcd_USB_OTG_FS.Init.low_power_enable = DISABLE;
hpcd_USB_OTG_FS.Init.lpm_enable = DISABLE;
hpcd_USB_OTG_FS.Init.battery_charging_enable = ENABLE;
hpcd_USB_OTG_FS.Init.use_dedicated_ep1 = DISABLE;
hpcd_USB_OTG_FS.Init.vbus_sensing_enable = ENABLE;
if (HAL_PCD_Init(&hpcd_USB_OTG_FS) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN USB_OTG_FS_Init 2 */
/* USER CODE END USB_OTG_FS_Init 2 */
}
/**
* @brief GPIO Initialization Function
* @param None
* @retval None
*/
static void MX_GPIO_Init(void)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOE_CLK_ENABLE();
__HAL_RCC_GPIOC_CLK_ENABLE();
__HAL_RCC_GPIOF_CLK_ENABLE();
__HAL_RCC_GPIOH_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
__HAL_RCC_GPIOG_CLK_ENABLE();
__HAL_RCC_GPIOD_CLK_ENABLE();
HAL_PWREx_EnableVddIO2();
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOB, LD3_Pin|LD2_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(USB_PowerSwitchOn_GPIO_Port, USB_PowerSwitchOn_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(LD1_GPIO_Port, LD1_Pin, GPIO_PIN_RESET);
/*Configure GPIO pins : PE2 PE3 PE4 PE5
PE6 PE7 PE8 PE9
PE10 PE11 PE12 PE13
PE14 PE15 PE0 PE1 */
GPIO_InitStruct.Pin = GPIO_PIN_2|GPIO_PIN_3|GPIO_PIN_4|GPIO_PIN_5
|GPIO_PIN_6|GPIO_PIN_7|GPIO_PIN_8|GPIO_PIN_9
|GPIO_PIN_10|GPIO_PIN_11|GPIO_PIN_12|GPIO_PIN_13
|GPIO_PIN_14|GPIO_PIN_15|GPIO_PIN_0|GPIO_PIN_1;
GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOE, &GPIO_InitStruct);
/*Configure GPIO pins : PC13 PC0 PC1 PC2
PC3 PC4 PC5 PC6
PC8 PC9 PC10 PC11
PC12 */
GPIO_InitStruct.Pin = GPIO_PIN_13|GPIO_PIN_0|GPIO_PIN_1|GPIO_PIN_2
|GPIO_PIN_3|GPIO_PIN_4|GPIO_PIN_5|GPIO_PIN_6
|GPIO_PIN_8|GPIO_PIN_9|GPIO_PIN_10|GPIO_PIN_11
|GPIO_PIN_12;
GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);
/*Configure GPIO pins : PF0 PF1 PF2 PF3
PF4 PF5 PF6 PF7
PF8 PF9 PF10 PF11
PF12 PF13 PF14 PF15 */
GPIO_InitStruct.Pin = GPIO_PIN_0|GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_3
|GPIO_PIN_4|GPIO_PIN_5|GPIO_PIN_6|GPIO_PIN_7
|GPIO_PIN_8|GPIO_PIN_9|GPIO_PIN_10|GPIO_PIN_11
|GPIO_PIN_12|GPIO_PIN_13|GPIO_PIN_14|GPIO_PIN_15;
GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOF, &GPIO_InitStruct);
/*Configure GPIO pins : PH0 PH3 */
GPIO_InitStruct.Pin = GPIO_PIN_0|GPIO_PIN_3;
GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOH, &GPIO_InitStruct);
/*Configure GPIO pins : PA0 PA1 PA2 PA3
PA4 PA5 PA6 PA7
PA15 */
GPIO_InitStruct.Pin = GPIO_PIN_0|GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_3
|GPIO_PIN_4|GPIO_PIN_5|GPIO_PIN_6|GPIO_PIN_7
|GPIO_PIN_15;
GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
/*Configure GPIO pins : PB0 PB1 PB2 PB10
PB11 PB12 PB13 PB15
PB4 PB5 PB6 */
GPIO_InitStruct.Pin = GPIO_PIN_0|GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_10
|GPIO_PIN_11|GPIO_PIN_12|GPIO_PIN_13|GPIO_PIN_15
|GPIO_PIN_4|GPIO_PIN_5|GPIO_PIN_6;
GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
/*Configure GPIO pins : PG0 PG1 PG2 PG3
PG4 PG9 PG10 PG11
PG12 PG13 PG14 PG15 */
GPIO_InitStruct.Pin = GPIO_PIN_0|GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_3
|GPIO_PIN_4|GPIO_PIN_9|GPIO_PIN_10|GPIO_PIN_11
|GPIO_PIN_12|GPIO_PIN_13|GPIO_PIN_14|GPIO_PIN_15;
GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOG, &GPIO_InitStruct);
/*Configure GPIO pins : LD3_Pin LD2_Pin */
GPIO_InitStruct.Pin = LD3_Pin|LD2_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
/*Configure GPIO pins : PD8 PD9 PD10 PD11
PD12 PD13 PD14 PD15
PD0 PD1 PD2 PD3
PD4 PD5 PD6 PD7 */
GPIO_InitStruct.Pin = GPIO_PIN_8|GPIO_PIN_9|GPIO_PIN_10|GPIO_PIN_11
|GPIO_PIN_12|GPIO_PIN_13|GPIO_PIN_14|GPIO_PIN_15
|GPIO_PIN_0|GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_3
|GPIO_PIN_4|GPIO_PIN_5|GPIO_PIN_6|GPIO_PIN_7;
GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOD, &GPIO_InitStruct);
/*Configure GPIO pin : USB_OverCurrent_Pin */
GPIO_InitStruct.Pin = USB_OverCurrent_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(USB_OverCurrent_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pin : USB_PowerSwitchOn_Pin */
GPIO_InitStruct.Pin = USB_PowerSwitchOn_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(USB_PowerSwitchOn_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pin : LD1_Pin */
GPIO_InitStruct.Pin = LD1_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(LD1_GPIO_Port, &GPIO_InitStruct);
}
/* USER CODE BEGIN 4 */
/**
* @brief Retargets the C library printf function to the USART.
* @param None
* @retval None
*/
PUTCHAR_PROTOTYPE
{
/* Place your implementation of fputc here */
/* e.g. write a character to the USART1 and Loop until the end of transmission */
HAL_UART_Transmit(&hlpuart1, (uint8_t *)&ch, 1, 0xFFFF);
return ch;
}
void make_di_dah(si5351_inst_t inst, uint8_t clk, unsigned int dah, uint32_t delay) {
/* inner function, no need to check inst */
if(!delay)
return;
HAL_GPIO_WritePin(LD2_GPIO_Port, LD2_Pin, GPIO_PIN_SET);
(void) si5351_enable_output(inst, clk);
osDelay(dah ? 3*delay : delay); // dit: 1 unit; dah 3 units length
HAL_GPIO_WritePin(LD2_GPIO_Port, LD2_Pin, GPIO_PIN_RESET);
(void) si5351_disable_output(inst, clk);
osDelay(delay); // one unit of inter character space (gap b/w dits and dahs within a character)
}
void morse(si5351_inst_t inst, uint8_t clk, char * s) {
const uint8_t mcode[] = {0x0d,0x57,0x77,0x17,0x01,0x75,0x1f,0x55,0x05,0xfd,
0x37,0x5d,0x0f,0x07,0x3f,0x7d,0xdf,0x1d,0x15,0x03,
0x35,0xd5,0x3d,0xd7,0xf7,0x5f,
0xf0,0xe0,0xc0,0x80,0x00,0x08,0x18,0x38,0x78,0xF8,
0xAA};
uint32_t delay[3];
uint8_t ch;
if(clk >= 3)
return;
osSemaphoreAcquire(data_accessHandle,osWaitForever);
(void) si5351_read_data(inst, delay);
osSemaphoreRelease(data_accessHandle);
while ((ch = *s++)) {
/* ascii code: numbers b/w 0x30 - 0x39 chars b/w 0x41 - 0x5A and 0x61 - 0x7A */
if ((ch > 0x40 && ch < 0x5B) || (ch > 0x60 && ch < 0x7A)) {
ch &= 0xDF; // make uppercase
ch -= 0x41; // index 0 for 'A'
} else if (ch > 0x2F && ch < 0x3A) {
ch -= 49-26;
}
if (ch != 0x20 && ch < sizeof(mcode)) { //when space add an additional pause (do nothing)
switch(ch) {
case '.': ch = 0x37;
break;
default:
ch = mcode[ch]; //from the given array morse code
}
if (ch & 0x01) { // character coding
for (int i=4; i>0; i--) {
switch ((ch & 0x03)) {
case 0: /* the end */
i = 0;
break;
case 1: /* did */
make_di_dah(inst, clk, 0, delay[clk]);
break;
case 3: /* dah */
make_di_dah(inst, clk, 1, delay[clk]);
break;
case 2: /* failure */
default:
i = -1;
break;
}
ch >>= 2;
}
} else if ((ch & 0x07) == 0) { // number coding
ch >>= 3;
for (int i= 5; i>0; i--) {
make_di_dah(inst, clk, ch & 0x01, delay[clk]);
ch >>= 1;
}
} else if ((ch & 0x03) == 2) { // special characters
ch >>= 2;
for (int i=6; i>0; i--) {
make_di_dah(inst, clk, ch & 0x01, delay[clk]);
ch >>= 1;
}
}
}
osDelay(3 * delay[clk]); //word inter character space (gap b/w the characters of a word) 3 units
}
}
/* USER CODE END 4 */
/* USER CODE BEGIN Header_StartDefaultTask */
/**
* @brief Function implementing the defaultTask thread.
* @param argument: Not used
* @retval None
*/
/* USER CODE END Header_StartDefaultTask */
void StartDefaultTask(void *argument)
{
/* USER CODE BEGIN 5 */
(void) argument; //unused argument
/* Infinite loop */
for(;;) {
// HAL_GPIO_TogglePin(LD1_GPIO_Port, LD1_Pin);
HAL_GPIO_WritePin(LD1_GPIO_Port, LD1_Pin, GPIO_PIN_SET);
osDelay(10);
HAL_GPIO_WritePin(LD1_GPIO_Port, LD1_Pin, GPIO_PIN_RESET);
osDelay(1000);
}
/* USER CODE END 5 */
}
/* USER CODE BEGIN Header_start_terminal_task */
/**
* @brief Function implementing the terminalTask thread.
* @param argument: Not used
* @retval None
*/
/* USER CODE END Header_start_terminal_task */
void start_terminal_task(void *argument)
{
/* USER CODE BEGIN start_terminal_task */
(void)argument;
HAL_StatusTypeDef status;
RTC_TimeTypeDef time;
RTC_DateTypeDef date;
/* Infinite loop */
for(;;) {
status = HAL_RTC_GetTime(&hrtc, &time, RTC_FORMAT_BIN);
if (status != HAL_OK)
puts("HAL_RTC_GetTime problem...");
status = HAL_RTC_GetDate(&hrtc, &date, RTC_FORMAT_BIN);
printf("Date/Time: %02d%02d-%02d-%02d %02d:%02d:%02d\n", (date.Year < 22) ? 21 : 20, date.Year, date.Month, date.Date, time.Hours, time.Minutes, time.Seconds);
osDelay(999);
}
/* USER CODE END start_terminal_task */
}
/* USER CODE BEGIN Header_start_morse_task */
/**
* @brief Function implementing the morseTask thread.
* @param argument: Not used
* @retval None
*/
/* USER CODE END Header_start_morse_task */
void start_morse_task(void *argument)
{
/* USER CODE BEGIN start_morse_task */
static const uint32_t delay = 120;
static const uint8_t clk = 0;
si5351_inst_t inst = argument;
int i = 0;
uint32_t morsedelay[3]; // words per minute ?
si5351_set_clk0(inst, 3550000);
osSemaphoreAcquire(data_accessHandle,osWaitForever);
si5351_read_data(inst, morsedelay);
morsedelay[clk] = delay;
si5351_write_data(inst, morsedelay);
osSemaphoreRelease(data_accessHandle);
/* Infinite loop */
for (;;) {
// check clock RTC for e.g. cycle of 1 minutes TX with 4 minutes pause period
morse(inst, 0, "MO");
osDelay(7*morsedelay[clk]);
if((++i % 8)==0) {
osSemaphoreAcquire(data_accessHandle,osWaitForever);
si5351_read_data(inst, morsedelay);
morsedelay[clk] = delay/4;
si5351_write_data(inst, morsedelay);
osSemaphoreRelease(data_accessHandle);
morse(inst, clk, " f0x.at1 de oe3tkt ");
osSemaphoreAcquire(data_accessHandle,osWaitForever);
si5351_read_data(inst, morsedelay);
morsedelay[clk] = delay;
si5351_write_data(inst, morsedelay);
osSemaphoreRelease(data_accessHandle);
osDelay(7*morsedelay[clk]);
}
}
/* USER CODE END start_morse_task */
}
/* USER CODE BEGIN Header_start_clk2_task */
/**
* @brief Function implementing the clk2Task thread.
* @param argument: Not used
* @retval None
*/
/* USER CODE END Header_start_clk2_task */
void start_clk2_task(void *argument)
{
/* USER CODE BEGIN start_clk2_task */
static const uint32_t delay = 100;
static const uint8_t clk =2;
si5351_inst_t inst = argument;
int i = 0;
uint32_t morsedelay[3]; // words per minute ?
si5351_set_clk(inst, 3570000, clk, SI5351_PLLB);
osSemaphoreAcquire(data_accessHandle,osWaitForever);
si5351_read_data(inst, morsedelay);
morsedelay[clk] = delay;
si5351_write_data(inst, morsedelay);
osSemaphoreRelease(data_accessHandle);
/* Infinite loop */
for (;;) {
// check clock RTC for e.g. cycle of 1 minutes TX with 4 minutes pause period
morse(inst, 0, "MOs");
osDelay(7*morsedelay[clk]);
if((++i % 8)==0) {
osSemaphoreAcquire(data_accessHandle,osWaitForever);
si5351_read_data(inst, morsedelay);
morsedelay[clk] = delay/4;
si5351_write_data(inst, morsedelay);
osSemaphoreRelease(data_accessHandle);
morse(inst, clk, " f0x.at1 de oe3tkt ");
osSemaphoreAcquire(data_accessHandle,osWaitForever);
si5351_read_data(inst, morsedelay);
morsedelay[clk] = delay;
si5351_write_data(inst, morsedelay);
osSemaphoreRelease(data_accessHandle);
osDelay(7*morsedelay[clk]);
}
}
/* USER CODE END start_clk2_task */
}
/**
* @brief Period elapsed callback in non blocking mode
* @note This function is called when TIM6 interrupt took place, inside
* HAL_TIM_IRQHandler(). It makes a direct call to HAL_IncTick() to increment
* a global variable "uwTick" used as application time base.
* @param htim : TIM handle
* @retval None
*/
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim)
{
/* USER CODE BEGIN Callback 0 */
/* USER CODE END Callback 0 */
if (htim->Instance == TIM6) {
HAL_IncTick();
}
/* USER CODE BEGIN Callback 1 */
/* USER CODE END Callback 1 */
}
/**
* @brief This function is executed in case of error occurrence.
* @retval None
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
__disable_irq();
while (1)
{
}
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
printf("Wrong parameters value: file %s on line %d\r\n", file, line);
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */