f0x.at1/stm32l4a6zg-f0x.at1/Core/external_sources/polasek/si5351.c

890 lines
31 KiB
C

/*
* si5351.c
*
* Created on: Jan 14, 2019
* Author: Petr Polasek
*
* To make this library useable on any other device than
* STM32Fxxx Cortex Mx, please edit these parts of the library:
*
* DEFINES:
* SI5351_I2C_PERIPHERAL - the I2C peripheral name according
* to your devices HAL library
* I2C_TIMEOUT - time for the communication to time out
*
* TYPEDEFS:
* Si5351_ConfigTypeDef - the I2Cx parameter should be changed
* so that its type corresponds to your HAL library
*
* FUNCTIONS:
* Si5351_WriteRegister
* Si5351_ReadRegister
* You need to write your own I2C handlers here
*
*/
//put your I2C HAL library name here
//#include "stm32f10x_i2c.h"
#include "stm32l4xx_hal.h"
#if 0
#include "si5351.h"
int Si5351_WriteRegister(Si5351_ConfigTypeDef *Si5351_ConfigStruct, uint8_t reg_address, uint8_t reg_data)
{
uint32_t error_wait;
error_wait = I2C_TIMEOUT;
while (I2C_GetFlagStatus(Si5351_ConfigStruct->I2Cx, I2C_FLAG_BUSY) == SET)
{
error_wait--;
if (error_wait==0)
{
I2C_SoftwareResetCmd(Si5351_ConfigStruct->I2Cx, ENABLE);
I2C_SoftwareResetCmd(Si5351_ConfigStruct->I2Cx, DISABLE);
return 1;
}
}
//wait for I2C to get ready, if not ready in time, reset I2C and return
I2C_GenerateSTART(Si5351_ConfigStruct->I2Cx, ENABLE);
//send START condition
error_wait = I2C_TIMEOUT;
while (I2C_CheckEvent(Si5351_ConfigStruct->I2Cx, I2C_EVENT_MASTER_MODE_SELECT) == ERROR)
{
error_wait--;
if (error_wait==0) return 1;
}
//wait for START to be sent, if not sent in time, return
I2C_Send7bitAddress(Si5351_ConfigStruct->I2Cx, Si5351_ConfigStruct->HW_I2C_Address, I2C_Direction_Transmitter);
//send address+RW bit
error_wait = I2C_TIMEOUT;
while (I2C_CheckEvent(Si5351_ConfigStruct->I2Cx, I2C_EVENT_MASTER_TRANSMITTER_MODE_SELECTED) == ERROR)
{
error_wait--;
if (error_wait==0) return 1;
}
//wait for address to be sent, if not sent in time, return
I2C_SendData(Si5351_ConfigStruct->I2Cx, reg_address);
//send reg address
error_wait = I2C_TIMEOUT;
while (I2C_CheckEvent(Si5351_ConfigStruct->I2Cx, I2C_EVENT_MASTER_BYTE_TRANSMITTED) == ERROR)
{
error_wait--;
if (error_wait==0) return 1;
}
//wait for reg address to be sent
I2C_SendData(Si5351_ConfigStruct->I2Cx, reg_data);
//send reg data
error_wait = I2C_TIMEOUT;
while (I2C_CheckEvent(Si5351_ConfigStruct->I2Cx, I2C_EVENT_MASTER_BYTE_TRANSMITTED) == ERROR)
{
error_wait--;
if (error_wait==0) return 1;
}
//wait for data to be sent, if not sent in time, return
I2C_GenerateSTOP(Si5351_ConfigStruct->I2Cx, ENABLE);
//generate STOP condition
error_wait = I2C_TIMEOUT;
while (I2C_GetFlagStatus(Si5351_ConfigStruct->I2Cx, I2C_FLAG_STOPF))
{
error_wait--;
if (error_wait==0) return 1;
}
//wait until STOP is cleared
return 0;
}
uint8_t Si5351_ReadRegister(Si5351_ConfigTypeDef *Si5351_ConfigStruct, uint8_t reg_address)
{
uint32_t error_wait;
error_wait = I2C_TIMEOUT;
while (I2C_GetFlagStatus(Si5351_ConfigStruct->I2Cx, I2C_FLAG_BUSY) == SET)
{
error_wait--;
if (error_wait==0)
{
I2C_SoftwareResetCmd(Si5351_ConfigStruct->I2Cx, ENABLE);
I2C_SoftwareResetCmd(Si5351_ConfigStruct->I2Cx, DISABLE);
return 1;
}
}
//wait for I2C to get ready, if not ready in time, reset I2C and return
I2C_GenerateSTART(Si5351_ConfigStruct->I2Cx, ENABLE);
//send START condition
error_wait = I2C_TIMEOUT;
while (I2C_CheckEvent(Si5351_ConfigStruct->I2Cx, I2C_EVENT_MASTER_MODE_SELECT) == ERROR)
{
error_wait--;
if (error_wait==0) return 1;
}
//wait for START to be sent, if not sent in time, return
I2C_Send7bitAddress(Si5351_ConfigStruct->I2Cx, Si5351_ConfigStruct->HW_I2C_Address, I2C_Direction_Transmitter);
//send address+RW bit
error_wait = I2C_TIMEOUT;
while (I2C_CheckEvent(Si5351_ConfigStruct->I2Cx, I2C_EVENT_MASTER_TRANSMITTER_MODE_SELECTED) == ERROR)
{
error_wait--;
if (error_wait==0) return 1;
}
//wait for address to be sent, if not sent in time, return
I2C_SendData(Si5351_ConfigStruct->I2Cx, reg_address);
//send reg address
error_wait = I2C_TIMEOUT;
while (I2C_CheckEvent(Si5351_ConfigStruct->I2Cx, I2C_EVENT_MASTER_BYTE_TRANSMITTED) == ERROR)
{
error_wait--;
if (error_wait==0) return 1;
}
//wait for reg address to be sent
I2C_GenerateSTOP(Si5351_ConfigStruct->I2Cx, ENABLE);
//generate STOP condition
error_wait = I2C_TIMEOUT;
while (I2C_GetFlagStatus(Si5351_ConfigStruct->I2Cx, I2C_FLAG_STOPF))
{
error_wait--;
if (error_wait==0) return 1;
}
//wait until STOP is cleared
error_wait = I2C_TIMEOUT;
while (I2C_GetFlagStatus(Si5351_ConfigStruct->I2Cx, I2C_FLAG_BUSY) == SET)
{
error_wait--;
if (error_wait==0)
{
I2C_SoftwareResetCmd(Si5351_ConfigStruct->I2Cx, ENABLE);
I2C_SoftwareResetCmd(Si5351_ConfigStruct->I2Cx, DISABLE);
return 1;
}
}
//wait for I2C to get ready, if not ready in time, reset I2C and return
I2C_GenerateSTART(Si5351_ConfigStruct->I2Cx, ENABLE);
//send START condition
error_wait = I2C_TIMEOUT;
while (I2C_CheckEvent(Si5351_ConfigStruct->I2Cx, I2C_EVENT_MASTER_MODE_SELECT) == ERROR)
{
error_wait--;
if (error_wait==0) return 1;
}
//wait for START to be sent, if not sent in time, return
I2C_Send7bitAddress(Si5351_ConfigStruct->I2Cx, Si5351_ConfigStruct->HW_I2C_Address, I2C_Direction_Receiver);
//send address+RW bit
error_wait = I2C_TIMEOUT;
while (I2C_CheckEvent(Si5351_ConfigStruct->I2Cx, I2C_EVENT_MASTER_RECEIVER_MODE_SELECTED) == ERROR)
{
error_wait--;
if (error_wait==0) return 1;
}
//wait for address to be sent, if not sent in time, return
while (I2C_CheckEvent(Si5351_ConfigStruct->I2Cx, I2C_EVENT_MASTER_BYTE_RECEIVED) == ERROR)
{
error_wait--;
if (error_wait==0) return 1;
}
//wait for data
uint8_t reg_data;
reg_data = I2C_ReceiveData(Si5351_ConfigStruct->I2Cx);
//receive reg data
I2C_GenerateSTOP(Si5351_ConfigStruct->I2Cx, ENABLE);
//generate STOP condition
error_wait = I2C_TIMEOUT;
while (I2C_GetFlagStatus(Si5351_ConfigStruct->I2Cx, I2C_FLAG_STOPF))
{
error_wait--;
if (error_wait==0) return 1;
}
//wait until STOP is cleared
return reg_data;
}
//set safe values in the config structure
void Si5351_StructInit(Si5351_ConfigTypeDef *Si5351_ConfigStruct)
{
uint8_t i;
Si5351_ConfigStruct->HW_I2C_Address = SI5351_I2C_ADDRESS;
Si5351_ConfigStruct->I2Cx = SI5351_I2C_PERIPHERAL;
Si5351_ConfigStruct->f_CLKIN = SI5351_CLKIN_FREQ;
Si5351_ConfigStruct->f_XTAL = SI5351_XTAL_FREQ;
Si5351_ConfigStruct->Interrupt_Mask_CLKIN = ON;
Si5351_ConfigStruct->Interrupt_Mask_PLLA = ON;
Si5351_ConfigStruct->Interrupt_Mask_PLLB = ON;
Si5351_ConfigStruct->Interrupt_Mask_SysInit = ON;
Si5351_ConfigStruct->Interrupt_Mask_XTAL = ON;
Si5351_ConfigStruct->Fanout_CLKIN_EN = ON;
Si5351_ConfigStruct->Fanout_MS_EN = ON;
Si5351_ConfigStruct->Fanout_XO_EN = ON;
Si5351_ConfigStruct->OSC.CLKIN_Div = CLKINDiv_Div1;
Si5351_ConfigStruct->OSC.OSC_XTAL_Load = XTAL_Load_10_pF;
Si5351_ConfigStruct->OSC.VCXO_Pull_Range_ppm = 0; //maybe should be set to 30 ppm, not clear from the AN-619
for (i=0; i<=1; i++)
{
Si5351_ConfigStruct->PLL[i].PLL_Clock_Source = PLL_Clock_Source_XTAL;
Si5351_ConfigStruct->PLL[i].PLL_Multiplier_Integer = 32; //range 24..36 for 25 MHz clock
Si5351_ConfigStruct->PLL[i].PLL_Multiplier_Numerator = 0; //range 0..1048575
Si5351_ConfigStruct->PLL[i].PLL_Multiplier_Denominator = 1; //range 1..1048575
Si5351_ConfigStruct->PLL[i].PLL_Capacitive_Load = PLL_Capacitive_Load_0; //select 0, unless you want to tune the PLL to <200 MHZ
}
Si5351_ConfigStruct->SS.SS_Amplitude_ppm = 0; //1.5% modulation = 15000
Si5351_ConfigStruct->SS.SS_Enable = OFF;
Si5351_ConfigStruct->SS.SS_Mode = SS_Mode_CenterSpread;
Si5351_ConfigStruct->SS.SS_NCLK = SS_NCLK_0; //default value, this parameter is unexplained in documentation
for (i=0; i<=7; i++)
{
Si5351_ConfigStruct->MS[i].MS_Clock_Source = MS_Clock_Source_PLLA;
Si5351_ConfigStruct->MS[i].MS_Divider_Integer = 4;
Si5351_ConfigStruct->MS[i].MS_Divider_Numerator = 0;
Si5351_ConfigStruct->MS[i].MS_Divider_Denominator = 1;
Si5351_ConfigStruct->CLK[i].CLK_Clock_Source = CLK_Clock_Source_MS_Own;
Si5351_ConfigStruct->CLK[i].CLK_Disable_State = CLK_Disable_State_HIGH_Z;
Si5351_ConfigStruct->CLK[i].CLK_Enable = OFF;
Si5351_ConfigStruct->CLK[i].CLK_I_Drv = CLK_I_Drv_8mA;
Si5351_ConfigStruct->CLK[i].CLK_Invert = OFF;
Si5351_ConfigStruct->CLK[i].CLK_PowerDown = OFF;
Si5351_ConfigStruct->CLK[i].CLK_QuarterPeriod_Offset = 0;
Si5351_ConfigStruct->CLK[i].CLK_R_Div = CLK_R_Div1;
Si5351_ConfigStruct->CLK[i].CLK_Use_OEB_Pin = OFF;
}
}
void Si5351_OSCConfig(Si5351_ConfigTypeDef *Si5351_ConfigStruct)
{
uint8_t tmp;
uint32_t VCXO_Param;
//set XTAL capacitive load and PLL VCO load capacitance
tmp = Si5351_ReadRegister(Si5351_ConfigStruct, REG_XTAL_CL);
tmp &= ~(XTAL_CL_MASK | PLL_CL_MASK);
tmp |= (XTAL_CL_MASK & (Si5351_ConfigStruct->OSC.OSC_XTAL_Load)) | (PLL_CL_MASK & ((Si5351_ConfigStruct->PLL[0].PLL_Capacitive_Load) << 1)) | (PLL_CL_MASK & ((Si5351_ConfigStruct->PLL[1].PLL_Capacitive_Load) << 4));
Si5351_WriteRegister(Si5351_ConfigStruct, REG_XTAL_CL, tmp);
//set CLKIN pre-divider
tmp = Si5351_ReadRegister(Si5351_ConfigStruct, REG_CLKIN_DIV);
tmp &= ~CLKIN_MASK;
tmp |= CLKIN_MASK & Si5351_ConfigStruct->OSC.CLKIN_Div;
Si5351_WriteRegister(Si5351_ConfigStruct, REG_CLKIN_DIV, tmp);
//set fanout of XO, MS0, MS4 and CLKIN - should be always on unless you
//need to reduce power consumption
tmp = Si5351_ReadRegister(Si5351_ConfigStruct, REG_FANOUT_EN);
tmp &= ~(FANOUT_CLKIN_EN_MASK | FANOUT_MS_EN_MASK | FANOUT_XO_EN_MASK);
if (Si5351_ConfigStruct->Fanout_CLKIN_EN == ON) tmp |= FANOUT_CLKIN_EN_MASK;
if (Si5351_ConfigStruct->Fanout_MS_EN == ON) tmp |= FANOUT_MS_EN_MASK;
if (Si5351_ConfigStruct->Fanout_XO_EN == ON) tmp |= FANOUT_XO_EN_MASK;
Si5351_WriteRegister(Si5351_ConfigStruct, REG_FANOUT_EN, tmp);
//if "b" in PLLB set to 10^6, set VCXO parameter
if (Si5351_ConfigStruct->PLL[1].PLL_Multiplier_Denominator == 1000000)
{
VCXO_Param = VCXO_PARAM_MASK & (uint32_t)
((103 * Si5351_ConfigStruct->OSC.VCXO_Pull_Range_ppm
* ((uint64_t)128000000 * Si5351_ConfigStruct->PLL[1].PLL_Multiplier_Integer +
Si5351_ConfigStruct->PLL[1].PLL_Multiplier_Numerator))/100000000);
} else {
VCXO_Param = 0;
}
tmp = (uint8_t) VCXO_Param;
Si5351_WriteRegister(Si5351_ConfigStruct, REG_VCXO_PARAM_0_7, tmp);
tmp = (uint8_t)(VCXO_Param>>8);
Si5351_WriteRegister(Si5351_ConfigStruct, REG_VCXO_PARAM_8_15, tmp);
tmp = (uint8_t)((VCXO_Param>>16) & VCXO_PARAM_16_21_MASK);
Si5351_WriteRegister(Si5351_ConfigStruct, REG_VCXO_PARAM_16_21, tmp);
}
EnableState Si5351_CheckStatusBit(Si5351_ConfigTypeDef *Si5351_ConfigStruct, Si5351_StatusBitTypeDef StatusBit)
{
uint8_t tmp;
tmp = Si5351_ReadRegister(Si5351_ConfigStruct, REG_DEV_STATUS);
tmp &= StatusBit;
return tmp;
}
EnableState Si5351_CheckStickyBit(Si5351_ConfigTypeDef *Si5351_ConfigStruct, Si5351_StatusBitTypeDef StatusBit)
{
uint8_t tmp;
tmp = Si5351_ReadRegister(Si5351_ConfigStruct, REG_DEV_STICKY);
tmp &= StatusBit;
return tmp;
}
void Si5351_InterruptConfig(Si5351_ConfigTypeDef *Si5351_ConfigStruct)
{
uint8_t tmp;
tmp = Si5351_ReadRegister(Si5351_ConfigStruct, REG_INT_MASK);
tmp &= ~INT_MASK_LOS_XTAL_MASK;
if (Si5351_ConfigStruct->Interrupt_Mask_XTAL == ON)
{
tmp |= INT_MASK_LOS_XTAL_MASK;
}
tmp &= ~INT_MASK_LOS_CLKIN_MASK;
if (Si5351_ConfigStruct->Interrupt_Mask_CLKIN == ON)
{
tmp |= INT_MASK_LOS_CLKIN_MASK;
}
tmp &= ~INT_MASK_LOL_A_MASK;
if (Si5351_ConfigStruct->Interrupt_Mask_PLLA == ON)
{
tmp |= INT_MASK_LOL_A_MASK;
}
tmp &= ~INT_MASK_LOL_B_MASK;
if (Si5351_ConfigStruct->Interrupt_Mask_PLLB == ON)
{
tmp |= INT_MASK_LOL_B_MASK;
}
tmp &= ~INT_MASK_SYS_INIT_MASK;
if (Si5351_ConfigStruct->Interrupt_Mask_SysInit == ON)
{
tmp |= INT_MASK_SYS_INIT_MASK;
}
Si5351_WriteRegister(Si5351_ConfigStruct, REG_INT_MASK, tmp);
}
void Si5351_ClearStickyBit(Si5351_ConfigTypeDef *Si5351_ConfigStruct, Si5351_StatusBitTypeDef StatusBit)
{
uint8_t tmp;
tmp = Si5351_ReadRegister(Si5351_ConfigStruct, REG_DEV_STICKY);
tmp &= ~StatusBit;
Si5351_WriteRegister(Si5351_ConfigStruct, REG_DEV_STICKY, tmp);
}
void Si5351_PLLConfig(Si5351_ConfigTypeDef *Si5351_ConfigStruct, Si5351_PLLChannelTypeDef PLL_Channel)
{
uint8_t tmp, tmp_mask;
uint32_t MSN_P1, MSN_P2, MSN_P3;
//set PLL clock source
tmp = Si5351_ReadRegister(Si5351_ConfigStruct, REG_PLL_CLOCK_SOURCE);
tmp_mask = PLLA_CLOCK_SOURCE_MASK << PLL_Channel;
tmp &= ~tmp_mask;
tmp |= tmp_mask & Si5351_ConfigStruct->PLL[PLL_Channel].PLL_Clock_Source;
Si5351_WriteRegister(Si5351_ConfigStruct, REG_PLL_CLOCK_SOURCE, tmp);
//if new multiplier not even integer, disable the integer mode
if ((Si5351_ConfigStruct->PLL[PLL_Channel].PLL_Multiplier_Numerator != 0) | ((Si5351_ConfigStruct->PLL[PLL_Channel].PLL_Multiplier_Integer & 0x01) != 0 ))
{
tmp = Si5351_ReadRegister(Si5351_ConfigStruct, REG_FB_INT + PLL_Channel);
tmp &= ~FB_INT_MASK;
Si5351_WriteRegister(Si5351_ConfigStruct, REG_FB_INT + PLL_Channel, tmp);
}
//configure the PLL multiplier
MSN_P1 = 128 * Si5351_ConfigStruct->PLL[PLL_Channel].PLL_Multiplier_Integer + ((128 * Si5351_ConfigStruct->PLL[PLL_Channel].PLL_Multiplier_Numerator) / Si5351_ConfigStruct->PLL[PLL_Channel].PLL_Multiplier_Denominator) - 512;
MSN_P2 = 128 * Si5351_ConfigStruct->PLL[PLL_Channel].PLL_Multiplier_Numerator - Si5351_ConfigStruct->PLL[PLL_Channel].PLL_Multiplier_Denominator * ((128 * Si5351_ConfigStruct->PLL[PLL_Channel].PLL_Multiplier_Numerator) / Si5351_ConfigStruct->PLL[PLL_Channel].PLL_Multiplier_Denominator);
MSN_P3 = Si5351_ConfigStruct->PLL[PLL_Channel].PLL_Multiplier_Denominator;
tmp = (uint8_t) MSN_P1;
Si5351_WriteRegister(Si5351_ConfigStruct, REG_MSN_P1_0_7 + 8 * PLL_Channel, tmp);
tmp = (uint8_t) (MSN_P1 >> 8);
Si5351_WriteRegister(Si5351_ConfigStruct, REG_MSN_P1_8_15 + 8 * PLL_Channel, tmp);
tmp = (uint8_t) (MSN_P1_16_17_MASK & (MSN_P1 >> 16));
Si5351_WriteRegister(Si5351_ConfigStruct, REG_MSN_P1_16_17 + 8 * PLL_Channel, tmp);
tmp = (uint8_t) MSN_P2;
Si5351_WriteRegister(Si5351_ConfigStruct, REG_MSN_P2_0_7 + 8 * PLL_Channel, tmp);
tmp = (uint8_t) (MSN_P2 >> 8);
Si5351_WriteRegister(Si5351_ConfigStruct, REG_MSN_P2_8_15 + 8 * PLL_Channel, tmp);
tmp = Si5351_ReadRegister(Si5351_ConfigStruct, REG_MSN_P2_16_19);
tmp &= ~MSN_P2_16_19_MASK;
tmp |= (uint8_t) (MSN_P2_16_19_MASK & (MSN_P2 >> 16));
Si5351_WriteRegister(Si5351_ConfigStruct, REG_MSN_P2_16_19 + 8 * PLL_Channel, tmp);
tmp = (uint8_t) MSN_P3;
Si5351_WriteRegister(Si5351_ConfigStruct, REG_MSN_P3_0_7 + 8 * PLL_Channel, tmp);
tmp = (uint8_t) (MSN_P3 >> 8);
Si5351_WriteRegister(Si5351_ConfigStruct, REG_MSN_P3_8_15 + 8 * PLL_Channel, tmp);
tmp = Si5351_ReadRegister(Si5351_ConfigStruct, REG_MSN_P3_16_19);
tmp &= ~MSN_P3_16_19_MASK;
tmp |= (uint8_t) (MSN_P3_16_19_MASK & ((MSN_P3 >> 16) << 4));
Si5351_WriteRegister(Si5351_ConfigStruct, REG_MSN_P3_16_19 + 8 * PLL_Channel, tmp);
//if new multiplier is an even integer, enable integer mode
if ((Si5351_ConfigStruct->PLL[PLL_Channel].PLL_Multiplier_Numerator == 0) & ((Si5351_ConfigStruct->PLL[PLL_Channel].PLL_Multiplier_Integer & 0x01) == 0 ))
{
tmp = Si5351_ReadRegister(Si5351_ConfigStruct, REG_FB_INT + PLL_Channel);
tmp |= FB_INT_MASK;
Si5351_WriteRegister(Si5351_ConfigStruct, REG_FB_INT + PLL_Channel, tmp);
}
}
void Si5351_PLLReset(Si5351_ConfigTypeDef *Si5351_ConfigStruct, Si5351_PLLChannelTypeDef PLL_Channel)
{
uint8_t tmp;
//reset PLL
tmp = Si5351_ReadRegister(Si5351_ConfigStruct, REG_PLL_RESET);
if (PLL_Channel == PLL_A)
{
tmp |= PLLA_RESET_MASK;
} else {
tmp |= PLLB_RESET_MASK;
}
Si5351_WriteRegister(Si5351_ConfigStruct, REG_PLL_RESET, tmp);
}
void Si5351_PLLSimultaneousReset(Si5351_ConfigTypeDef *Si5351_ConfigStruct)
{
uint8_t tmp;
//reset PLL
tmp = Si5351_ReadRegister(Si5351_ConfigStruct, REG_PLL_RESET);
tmp |= PLLA_RESET_MASK | PLLB_RESET_MASK;
Si5351_WriteRegister(Si5351_ConfigStruct, REG_PLL_RESET, tmp);
}
void Si5351_SSConfig(Si5351_ConfigTypeDef *Si5351_ConfigStruct)
{
uint8_t tmp;
uint32_t SSUDP, SSUP_P1, SSUP_P2, SSUP_P3, SSDN_P1, SSDN_P2, SSDN_P3;
uint64_t SSDN, SSUP;
//turn off SS if it should be disabled
if ((Si5351_ConfigStruct->SS.SS_Enable == OFF)|
(((Si5351_ConfigStruct->PLL[0].PLL_Multiplier_Integer & 0x01) == 0)
& (Si5351_ConfigStruct->PLL[0].PLL_Multiplier_Numerator == 0)) )
{
tmp = Si5351_ReadRegister(Si5351_ConfigStruct, REG_SSC_EN);
tmp &= ~SSC_EN_MASK;
Si5351_WriteRegister(Si5351_ConfigStruct, REG_SSC_EN, tmp);
}
//set default value of SS_NCLK - spread spectrum reserved register
tmp = Si5351_ReadRegister(Si5351_ConfigStruct, REG_SS_NCLK);
tmp &= ~SS_NCLK_MASK;
tmp |= SS_NCLK_MASK & (Si5351_ConfigStruct->SS.SS_NCLK);
Si5351_WriteRegister(Si5351_ConfigStruct, REG_SS_NCLK, tmp);
//set SS mode
tmp = Si5351_ReadRegister(Si5351_ConfigStruct, REG_SSC_MODE);
tmp &= ~SSC_MODE_MASK;
tmp |= SSC_MODE_MASK & Si5351_ConfigStruct->SS.SS_Mode;
Si5351_WriteRegister(Si5351_ConfigStruct, REG_SSC_MODE, tmp);
//set SSUDP parameter
if (Si5351_ConfigStruct->PLL[0].PLL_Clock_Source == PLL_Clock_Source_CLKIN)
{
SSUDP = (Si5351_ConfigStruct->f_CLKIN)/(4*31500);
} else {
SSUDP = (Si5351_ConfigStruct->f_XTAL)/(4*31500);
}
//set SSUDP parameter
tmp = (uint8_t) SSUDP;
Si5351_WriteRegister(Si5351_ConfigStruct, REG_SSUDP_0_7, tmp);
tmp = Si5351_ReadRegister(Si5351_ConfigStruct, REG_SSUDP_8_11);
tmp &= ~SSUDP_8_11_MASK;
tmp |= (uint8_t) (SSUDP_8_11_MASK & ((SSUDP >> 8) << 4));
Si5351_WriteRegister(Si5351_ConfigStruct, REG_SSUDP_8_11, tmp);
//calculate SSUP and SSDN parameters
if (Si5351_ConfigStruct->SS.SS_Mode == SS_Mode_CenterSpread)
{
SSUP = ((uint64_t)(64000000*Si5351_ConfigStruct->PLL[0].PLL_Multiplier_Integer
+ (64000000*Si5351_ConfigStruct->PLL[0].PLL_Multiplier_Numerator)/(Si5351_ConfigStruct->PLL[0].PLL_Multiplier_Denominator)
) * Si5351_ConfigStruct->SS.SS_Amplitude_ppm
) / ((1000000 - Si5351_ConfigStruct->SS.SS_Amplitude_ppm) * SSUDP);
SSDN = ((uint64_t)(64000000*Si5351_ConfigStruct->PLL[0].PLL_Multiplier_Integer
+ (64000000*Si5351_ConfigStruct->PLL[0].PLL_Multiplier_Numerator)/(Si5351_ConfigStruct->PLL[0].PLL_Multiplier_Denominator)
) * Si5351_ConfigStruct->SS.SS_Amplitude_ppm
) / ((1000000 + Si5351_ConfigStruct->SS.SS_Amplitude_ppm) * SSUDP);
SSUP_P1 = (uint32_t) (SSUP/1000000);
SSUP_P2 = (uint32_t)(32767*(SSUP/1000000-SSUP_P1));
SSUP_P3 = 0x7FFF;
} else {
SSDN = ((uint64_t)(64000000*Si5351_ConfigStruct->PLL[0].PLL_Multiplier_Integer
+ (64000000*Si5351_ConfigStruct->PLL[0].PLL_Multiplier_Numerator)/(Si5351_ConfigStruct->PLL[0].PLL_Multiplier_Denominator)
) * Si5351_ConfigStruct->SS.SS_Amplitude_ppm
) / ((1000000 + Si5351_ConfigStruct->SS.SS_Amplitude_ppm) * SSUDP);
SSUP_P1 = 0;
SSUP_P2 = 0;
SSUP_P3 = 1;
}
//set SSDN parameter
SSDN_P1 = (uint32_t) (SSDN/1000000);
SSDN_P2 = (uint32_t)(32767*(SSDN/1000000-SSDN_P1));
SSDN_P3 = 0x7FFF;
//write SSUP parameter P1
tmp = (uint8_t) SSUP_P1;
Si5351_WriteRegister(Si5351_ConfigStruct, REG_SSUP_P1_0_7, tmp);
tmp = Si5351_ReadRegister(Si5351_ConfigStruct, REG_SSUP_P1_8_11);
tmp &= ~SSUP_P1_8_11_MASK;
tmp |= (uint8_t)(SSUP_P1_8_11_MASK & (SSUP_P1 >> 8));
Si5351_WriteRegister(Si5351_ConfigStruct, REG_SSUP_P1_8_11, tmp);
//write SSUP parameter P2
tmp = (uint8_t) SSUP_P2;
Si5351_WriteRegister(Si5351_ConfigStruct, REG_SSUP_P2_0_7, tmp);
tmp = Si5351_ReadRegister(Si5351_ConfigStruct, REG_SSUP_P2_8_14);
tmp &= ~SSUP_P2_8_14_MASK;
tmp |= (uint8_t)(SSUP_P2_8_14_MASK & (SSUP_P2 >> 8));
Si5351_WriteRegister(Si5351_ConfigStruct, REG_SSUP_P2_8_14, tmp);
//write SSUP parameter P3
tmp = (uint8_t) SSUP_P3;
Si5351_WriteRegister(Si5351_ConfigStruct, REG_SSUP_P3_0_7, tmp);
tmp = Si5351_ReadRegister(Si5351_ConfigStruct, REG_SSUP_P3_8_14);
tmp &= ~SSUP_P3_8_14_MASK;
tmp |= (uint8_t)(SSUP_P3_8_14_MASK & (SSUP_P3 >> 8));
Si5351_WriteRegister(Si5351_ConfigStruct, REG_SSUP_P3_8_14, tmp);
//write SSDN parameter P1
tmp = (uint8_t) SSDN_P1;
Si5351_WriteRegister(Si5351_ConfigStruct, REG_SSDN_P1_0_7, tmp);
tmp = Si5351_ReadRegister(Si5351_ConfigStruct, REG_SSDN_P1_8_11);
tmp &= ~SSDN_P1_8_11_MASK;
tmp |= (uint8_t)(SSDN_P1_8_11_MASK & (SSDN_P1 >> 8));
Si5351_WriteRegister(Si5351_ConfigStruct, REG_SSDN_P1_8_11, tmp);
//write SSDN parameter P2
tmp = (uint8_t) SSDN_P2;
Si5351_WriteRegister(Si5351_ConfigStruct, REG_SSDN_P2_0_7, tmp);
tmp = Si5351_ReadRegister(Si5351_ConfigStruct, REG_SSDN_P2_8_14);
tmp &= ~SSDN_P2_8_14_MASK;
tmp |= (uint8_t)(SSDN_P2_8_14_MASK & (SSDN_P2 >> 8));
Si5351_WriteRegister(Si5351_ConfigStruct, REG_SSDN_P2_8_14, tmp);
//write SSDN parameter P3
tmp = (uint8_t) SSDN_P3;
Si5351_WriteRegister(Si5351_ConfigStruct, REG_SSDN_P3_0_7, tmp);
tmp = Si5351_ReadRegister(Si5351_ConfigStruct, REG_SSDN_P3_8_14);
tmp &= ~SSDN_P3_8_14_MASK;
tmp |= (uint8_t)(SSDN_P3_8_14_MASK & (SSDN_P3 >> 8));
Si5351_WriteRegister(Si5351_ConfigStruct, REG_SSDN_P3_8_14, tmp);
//turn on SS if it should be enabled
if ((Si5351_ConfigStruct->SS.SS_Enable == ON)
& (((Si5351_ConfigStruct->PLL[0].PLL_Multiplier_Integer & 0x01) != 0)
| (Si5351_ConfigStruct->PLL[0].PLL_Multiplier_Numerator != 0)))
{
tmp = Si5351_ReadRegister(Si5351_ConfigStruct, REG_SSC_EN);
tmp |= SSC_EN_MASK;
Si5351_WriteRegister(Si5351_ConfigStruct, REG_SSC_EN, tmp);
}
}
void Si5351_MSConfig(Si5351_ConfigTypeDef *Si5351_ConfigStruct, Si5351_MSChannelTypeDef MS_Channel)
{
uint8_t tmp;
uint32_t MS_P1, MS_P2, MS_P3;
//configure MultiSynth clock source
tmp = Si5351_ReadRegister(Si5351_ConfigStruct, REG_MS_SRC + MS_Channel);
tmp &= ~MS_SRC_MASK;
if (Si5351_ConfigStruct->MS[MS_Channel].MS_Clock_Source == MS_Clock_Source_PLLB)
{
tmp |= MS_SRC_MASK;
}
Si5351_WriteRegister(Si5351_ConfigStruct, REG_MS_SRC + MS_Channel, tmp);
if (MS_Channel <= MS5) //configuration is simpler for MS6 and 7 since they are integer-only
{
//if next value not in even integer mode or if divider is not equal to 4, disable DIVBY4
if ((Si5351_ConfigStruct->MS[MS_Channel].MS_Divider_Integer != 4)|(Si5351_ConfigStruct->MS[MS_Channel].MS_Divider_Numerator != 0))
{
tmp = Si5351_ReadRegister(Si5351_ConfigStruct, REG_MS_DIVBY4 + 8 * MS_Channel);
tmp &= ~MS_DIVBY4_MASK;
Si5351_WriteRegister(Si5351_ConfigStruct, REG_MS_DIVBY4 + 8 * MS_Channel, tmp);
}
//if next value not in even integer mode or SS enabled, disable integer mode
if ((Si5351_ConfigStruct->MS[MS_Channel].MS_Divider_Numerator != 0)|((Si5351_ConfigStruct->MS[MS_Channel].MS_Divider_Integer & 0x01) != 0)|(Si5351_ConfigStruct->SS.SS_Enable == ON))
{
tmp = Si5351_ReadRegister(Si5351_ConfigStruct, REG_MS_INT + MS_Channel);
tmp &= ~MS_INT_MASK;
Si5351_WriteRegister(Si5351_ConfigStruct, REG_MS_INT + MS_Channel, tmp);
}
//set new divider value
MS_P1 = 128 * Si5351_ConfigStruct->MS[MS_Channel].MS_Divider_Integer
+ ((128 * Si5351_ConfigStruct->MS[MS_Channel].MS_Divider_Numerator) / Si5351_ConfigStruct->MS[MS_Channel].MS_Divider_Denominator)
- 512;
MS_P2 = 128 * Si5351_ConfigStruct->MS[MS_Channel].MS_Divider_Numerator
- Si5351_ConfigStruct->MS[MS_Channel].MS_Divider_Denominator
* ((128 * Si5351_ConfigStruct->MS[MS_Channel].MS_Divider_Numerator) / Si5351_ConfigStruct->MS[MS_Channel].MS_Divider_Denominator);
MS_P3 = Si5351_ConfigStruct->MS[MS_Channel].MS_Divider_Denominator;
tmp = (uint8_t) MS_P1;
Si5351_WriteRegister(Si5351_ConfigStruct, REG_MS_P1_0_7 + 8 * MS_Channel, tmp);
tmp = (uint8_t) (MS_P1 >> 8);
Si5351_WriteRegister(Si5351_ConfigStruct, REG_MS_P1_8_15 + 8 * MS_Channel, tmp);
tmp = Si5351_ReadRegister(Si5351_ConfigStruct, REG_MS_P1_16_17);
tmp &= ~MS_P1_16_17_MASK;
tmp |= (uint8_t) (MS_P1_16_17_MASK & (MS_P1 >> 16));
Si5351_WriteRegister(Si5351_ConfigStruct, REG_MS_P1_16_17 + 8 * MS_Channel, tmp);
tmp = (uint8_t) MS_P2;
Si5351_WriteRegister(Si5351_ConfigStruct, REG_MS_P2_0_7 + 8 * MS_Channel, tmp);
tmp = (uint8_t) (MS_P2 >> 8);
Si5351_WriteRegister(Si5351_ConfigStruct, REG_MS_P2_8_15 + 8 * MS_Channel, tmp);
Si5351_ReadRegister(Si5351_ConfigStruct, REG_MS_P2_16_19 + 8 * MS_Channel);
tmp &= ~MS_P2_16_19_MASK;
tmp |= (uint8_t) (MS_P2_16_19_MASK & (MS_P2 >> 16));
Si5351_WriteRegister(Si5351_ConfigStruct, REG_MS_P2_16_19 + 8 * MS_Channel, tmp);
tmp = (uint8_t) MS_P3;
Si5351_WriteRegister(Si5351_ConfigStruct, REG_MS_P3_0_7 + 8 * MS_Channel, tmp);
tmp = (uint8_t) (MS_P3 >> 8);
Si5351_WriteRegister(Si5351_ConfigStruct, REG_MS_P3_8_15 + 8 * MS_Channel, tmp);
tmp = Si5351_ReadRegister(Si5351_ConfigStruct, REG_MS_P3_16_19 + 8 * MS_Channel);
tmp &= ~MS_P3_16_19_MASK;
tmp |= (uint8_t) (MS_P3_16_19_MASK & ((MS_P3 >> 16) << 4));
Si5351_WriteRegister(Si5351_ConfigStruct, REG_MS_P3_16_19 + 8 * MS_Channel, tmp);
//if next value is even integer and SS not enabled, enable integer mode
if ((Si5351_ConfigStruct->MS[MS_Channel].MS_Divider_Numerator == 0) & ((Si5351_ConfigStruct->MS[MS_Channel].MS_Divider_Integer & 0x01) == 0) & (Si5351_ConfigStruct->SS.SS_Enable == OFF))
{
tmp = Si5351_ReadRegister(Si5351_ConfigStruct, REG_MS_INT + MS_Channel);
tmp |= MS_INT_MASK;
Si5351_WriteRegister(Si5351_ConfigStruct, REG_MS_INT + MS_Channel, tmp);
//if next value in integer mode and if divider is equal to 4, enable DIVBY4
if (Si5351_ConfigStruct->MS[MS_Channel].MS_Divider_Integer == 4)
{
tmp = Si5351_ReadRegister(Si5351_ConfigStruct, REG_MS_DIVBY4 + 8 * MS_Channel);
tmp |= MS_DIVBY4_MASK;
Si5351_WriteRegister(Si5351_ConfigStruct, REG_MS_DIVBY4 + 8 * MS_Channel, tmp);
}
}
} else {
//configure divider of Multisynth 6 and 7
Si5351_WriteRegister(Si5351_ConfigStruct, REG_MS67_P1 + (MS_Channel - MS6), (uint8_t)(Si5351_ConfigStruct->MS[MS_Channel].MS_Divider_Integer));
//can be only even integers between 6 and 254, inclusive
}
}
void Si5351_CLKPowerCmd(Si5351_ConfigTypeDef *Si5351_ConfigStruct, Si5351_CLKChannelTypeDef CLK_Channel)
{
uint8_t tmp, tmp_mask;
//set CLK disable state
tmp = Si5351_ReadRegister(Si5351_ConfigStruct, REG_CLK_DIS_STATE + (CLK_Channel >> 2)); //increment the address by 1 if CLKx>=CLK4
tmp_mask = CLK_DIS_STATE_MASK << ((CLK_Channel & 0x03)<<1); //shift the mask according to the selected channel
tmp &= ~tmp_mask;
tmp |= tmp_mask & ((Si5351_ConfigStruct->CLK[CLK_Channel].CLK_Disable_State) << ((CLK_Channel & 0x03)<<1));
Si5351_WriteRegister(Si5351_ConfigStruct, REG_CLK_DIS_STATE + (CLK_Channel >> 2), tmp);
//set OEB pin
tmp = Si5351_ReadRegister(Si5351_ConfigStruct, REG_CLK_OEB);
tmp_mask = 1 << CLK_Channel;
tmp &= ~tmp_mask;
if (Si5351_ConfigStruct->CLK[CLK_Channel].CLK_Use_OEB_Pin == OFF)
{
tmp |= tmp_mask;
}
if (Si5351_ConfigStruct->CLK[CLK_Channel].CLK_Enable == OFF) //disable clock
{
//power down the clock
tmp = Si5351_ReadRegister(Si5351_ConfigStruct, REG_CLK_EN);
tmp |= 1 << CLK_Channel;
Si5351_WriteRegister(Si5351_ConfigStruct, REG_CLK_EN, tmp);
}
if (Si5351_ConfigStruct->CLK[CLK_Channel].CLK_PowerDown == ON) //power down clock
{
//power down output driver
tmp = Si5351_ReadRegister(Si5351_ConfigStruct, REG_CLK_PDN + CLK_Channel);
tmp |= CLK_PDN_MASK;
Si5351_WriteRegister(Si5351_ConfigStruct, REG_CLK_PDN + CLK_Channel, tmp);
}
if (Si5351_ConfigStruct->CLK[CLK_Channel].CLK_PowerDown == OFF) //power up clock
{
//power up output driver
tmp = Si5351_ReadRegister(Si5351_ConfigStruct, REG_CLK_PDN + CLK_Channel);
tmp &= ~CLK_PDN_MASK;
Si5351_WriteRegister(Si5351_ConfigStruct, REG_CLK_PDN + CLK_Channel, tmp);
}
if (Si5351_ConfigStruct->CLK[CLK_Channel].CLK_Enable == ON) //enable clock
{
//power up the clock
tmp = Si5351_ReadRegister(Si5351_ConfigStruct, REG_CLK_EN);
tmp &= ~(1 << CLK_Channel);
Si5351_WriteRegister(Si5351_ConfigStruct, REG_CLK_EN, tmp);
}
}
void Si5351_CLKConfig(Si5351_ConfigTypeDef *Si5351_ConfigStruct, Si5351_CLKChannelTypeDef CLK_Channel)
{
uint8_t tmp, tmp_mask;
//set CLK source clock
tmp = Si5351_ReadRegister(Si5351_ConfigStruct, REG_CLK_SRC + CLK_Channel);
tmp &= ~CLK_SRC_MASK;
tmp |= CLK_SRC_MASK & Si5351_ConfigStruct->CLK[CLK_Channel].CLK_Clock_Source;
Si5351_WriteRegister(Si5351_ConfigStruct, REG_CLK_SRC + CLK_Channel, tmp);
//set CLK inversion
tmp = Si5351_ReadRegister(Si5351_ConfigStruct, REG_CLK_INV + CLK_Channel);
tmp &= ~CLK_INV_MASK;
if (Si5351_ConfigStruct->CLK[CLK_Channel].CLK_Invert == ON)
{
tmp |= CLK_INV_MASK;
}
Si5351_WriteRegister(Si5351_ConfigStruct, REG_CLK_INV + CLK_Channel, tmp);
//set CLK current drive
tmp = Si5351_ReadRegister(Si5351_ConfigStruct, REG_CLK_IDRV + CLK_Channel);
tmp &= ~CLK_IDRV_MASK;
tmp |= CLK_IDRV_MASK & Si5351_ConfigStruct->CLK[CLK_Channel].CLK_I_Drv;
Si5351_WriteRegister(Si5351_ConfigStruct, REG_CLK_IDRV + CLK_Channel, tmp);
if (CLK_Channel <= CLK5) //CLK6 and 7 are integer only, which causes several limitations
{
//set CLK phase offset
tmp = CLK_PHOFF_MASK & (Si5351_ConfigStruct->CLK[CLK_Channel].CLK_QuarterPeriod_Offset);
Si5351_WriteRegister(Si5351_ConfigStruct, REG_CLK_PHOFF + CLK_Channel, tmp);
//set Rx divider
tmp = Si5351_ReadRegister(Si5351_ConfigStruct, REG_CLK_R_DIV + CLK_Channel * CLK_R_DIV_STEP);
tmp &= ~CLK_R_DIV_MASK;
tmp |= CLK_R_DIV_MASK & (Si5351_ConfigStruct->CLK[CLK_Channel].CLK_R_Div);
Si5351_WriteRegister(Si5351_ConfigStruct, REG_CLK_R_DIV + CLK_Channel * CLK_R_DIV_STEP, tmp);
} else {
//CLK6 and CLK7 have no fractional mode, so they lack the phase offset function
//set Rx divider
tmp_mask = CLK_R67_DIV_MASK << ((CLK_Channel-CLK6) << 2); //shift mask left by 4 if CLK7
tmp = Si5351_ReadRegister(Si5351_ConfigStruct, REG_CLK_R67_DIV);
tmp &= ~tmp_mask;
tmp |= tmp_mask & ((Si5351_ConfigStruct->CLK[CLK_Channel].CLK_R_Div >> 4) << ((CLK_Channel-CLK6) << 2));
Si5351_WriteRegister(Si5351_ConfigStruct, REG_CLK_R67_DIV, tmp);
}
}
int Si5351_Init(Si5351_ConfigTypeDef *Si5351_ConfigStruct)
{
uint32_t timeout = SI5351_TIMEOUT;
uint8_t i;
//wait for the 5351 to initialize
while (Si5351_CheckStatusBit(Si5351_ConfigStruct, StatusBit_SysInit))
{
timeout--;
if (timeout==0) return 1; //return 1 if initialization timed out
}
//configure oscillator, fanout, interrupts, VCXO
Si5351_OSCConfig(Si5351_ConfigStruct);
Si5351_InterruptConfig(Si5351_ConfigStruct);
//configure PLLs
for (i=PLL_A; i<=PLL_B; i++)
{
Si5351_PLLConfig(Si5351_ConfigStruct, i);
Si5351_PLLReset(Si5351_ConfigStruct, i);
}
//configure Spread Spectrum
Si5351_SSConfig(Si5351_ConfigStruct);
//Configure Multisynths
for (i=MS0; i<=MS7; i++)
{
Si5351_MSConfig(Si5351_ConfigStruct, i);
}
//configure outputs
for (i=CLK0; i<=CLK7; i++)
{
Si5351_CLKConfig(Si5351_ConfigStruct, i);
}
//wait for PLLs to lock
while (Si5351_CheckStatusBit(Si5351_ConfigStruct, StatusBit_SysInit | StatusBit_PLLA | StatusBit_PLLB))
{
timeout--;
if (timeout==0) return 1; //return 1 if problem with any PLL
}
//clear sticky bits
Si5351_ClearStickyBit(Si5351_ConfigStruct, StatusBit_SysInit | StatusBit_PLLA | StatusBit_PLLB);
if (Si5351_ConfigStruct->f_CLKIN != 0) //if CLKIN used, check it as well
{
while (Si5351_CheckStatusBit(Si5351_ConfigStruct, StatusBit_CLKIN))
{
timeout--;
if (timeout==0) return 1; //return 1 if initialization timed out
}
//clear CLKIN sticky bit
Si5351_ClearStickyBit(Si5351_ConfigStruct, StatusBit_CLKIN);
}
if (Si5351_ConfigStruct->f_XTAL != 0) //if XTAL used, check it as well
{
while (Si5351_CheckStatusBit(Si5351_ConfigStruct, StatusBit_XTAL))
{
timeout--;
if (timeout==0) return 1; //return 1 if initialization timed out
}
//clear XTAL sticky bit
Si5351_ClearStickyBit(Si5351_ConfigStruct, StatusBit_XTAL);
}
//power on or off the outputs
for (i=CLK0; i<=CLK7; i++)
{
Si5351_CLKPowerCmd(Si5351_ConfigStruct, i);
}
return 0;
}
#endif